

Index

Documentation for the atlas project

The documentation generated by this project is hosted at https://sites.ecmwf.int/docs/atlas

The documentation is written in ReStructuredText (rst), and converted by Pelican into HTML.
The C++ API is generated via Doxygen. The generated documentation is using m.css which results
in a nice looking and responsive web site.

The documentation is licensed with the Apache 2.0 license, see LICENSE file

Requirements for building:

	Python version 3.6 or higher

	Doxygen version 1.8.17 or higher

	LaTeX, optional: Recommended for rendering maths

Generate and view documentation

Step 1: Generate the website

`
make html
`

For detailed options, see make help

Step 2: View the website

`
make serve
`

Now open browser at http://localhost:8000. Voila.

Publishing documentation

Following script can be used to publish the website to https://sites.ecmwf.int/docs/atlas.

`
scripts/publish.sh
`

Note, this requires special access credentials, and is only intended for official maintainers.

About the Project

	summary

	Legal info, third party licenses and contributor credits

License

Atlas library code, documentation and website is licensed under the Apache License Version2.0:

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

Copyright 1996-2018 ECMWF

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Contact Us

	summary

	Ways to contact the team, follow the development, contribute

You can contact the team and follow the development via the following means:

	GitHub — https://github.com/ecmwf

	E-mail — willem.deconinck@ecmwf.int

Contribute to the project

Make a difference by submitting a bug report, feature request or submit a
patch. Best way to contribute is via the :gh:`GitHub project page <ecmwf/atlas>`,
but you can also send patches via e-mail or any other way. Thank you!

Atlas design and implementation

This page discusses the design of the most important Atlas concepts,
and to a certain level their implementation details. Implementation details
are aided by diagrams formulated in the Unified Modelling Language (UML) [http://www.uml.org].

Object oriented design »

Grid »

Mesh »

Interpolation »

Parallelisation »

FunctionSpace »

Field »

Mathematical operations »

Plugin architecture »

Getting started

Downloading and building »

Comprehensive guide on how to download and build Atlas,
including some of the in-house third party dependencies.

Linking Atlas into your project »

Comprehensive guide on how to get your CMake project to use Atlas

Atlas

	save_as

	index.html

	url

	

	cover

	{static}/img/cover.jpg

	description

	Data structure library for NWP and Climate Modelling

	summary

	Data structure library for NWP and Climate Modelling

	hide_navbar_brand

	True

	landing

	

Atlas

A library for Numerical Weather Prediction and Climate Modelling

Atlas is an open source library providing grids, mesh generation, and parallel
data structures targetting Numerical Weather Prediction or Climate Model
developments.

	
m-text-center m-text m-warning m-noindent

	

Version 0.26.0 released

Introduction

Atlas is an ECMWF software library for parallel flexible
data-structures supporting structured/unstructured grids,
structured/unstructured meshes, various function spaces
and utilities.
The main aim of Atlas is to investigate and develop more
scalable dynamical core options for numerical weather prediction
(NWP). Atlas is also intended to create modern interpolation
and product generation software.

Atlas is predominantly written in C++, with the main features
available to Fortran through an F2003 interface. To be used
effectively, it requires some knowledge of Unix (such as Linux).
It is known to run on a number of systems, some of which are
directly supported by ECMWF.

	Atlas includes the following macro data objects.
	
	Grid: a list of coordinates (i.e. points) without connectivity rules;

	Mesh: a collection of elements linked by precise connectivity rules;

	Field: a physical quantity such as wind velocity or pressure;

	FieldSet: a collection of Fields;

	FunctionSpace: a given spatial discretization space (e.g. spectral, finite element, etc.).

From these objects it is possible to construct new algorithms
to be tested within the context of numerical weather prediction
(NWP), to generate and manipulate grids for production
cases, etc. The overall structure of the library is depicted
here:

[image: Image alt text]

Schematics of the Atlas library

From this figure, we note that there is the additional object
called Metadata and related to the Field object. Metadata
contains a description of a given Field (e.g. units, etc.).
We also note that the Mesh object is formed by the Nodes
and HybridElements objects, with the last being composed
by Elements. These additional items represents the bricks
to ultimately build the mesh object.

The structure in this figure will be
further explained in chapter ref{chap:structure}.

Atlas tools

This page discusses some of the tools thar are provided by the atlas installation.

atlas-grids »

atlas-meshgen »

Grid

	breadcrumb

	{filename}/design.rst Design

Contents

	Grid

	Introduction

	Projection

	Domain

	Supported Grid types

	UnstructuredGrid

	StructuredGrid

	RegularGrid

	ReducedGrid

	GaussianGrid

	RegularGaussianGrid

	ReducedGaussianGrid

	Classic reduced Gaussian grids

	Octahedral reduced Gaussian grids

	RegularLonLatGrid

	RegularPeriodicGrid

	RegularRegionalGrid

	Partitioner

	Checkerboard Partitioner

	EqualRegions Partitioner

	MatchingMesh Partitioner

	MatchingFunctionSpace Partitioner

Introduction

In the NWP and climate modelling community (as opposed to, for instance, the engineering
community) the grid is often a fixed property for a model.
One of Atlas’ goals is to provide a catalogue of a variety of global and regional grids defined by the World Meteorological Organisation in order to support multiple models and model inter-comparison initiatives.

There exist three main categories of grids in terms of functionality that Atlas can
currently represent: unstructured grids, regular grids, and reduced grids.

Unstructured grids describe an arbitrary number of points in no particular order.
The x- and y-coordinates of the points cannot be computed with certain mathematical formulations, and thus have to be specified individually for each point (e.g. refFigure{unstructured-grid}).

Regular grids on the other hand make the assumption that points are aligned in both x- and y-direction (e.g. refFigure{regular-grid}).
Grid point coordinates can then be derived by two independent
indices (i, j) associated to the x- and y- direction, respectively.

For reduced grids, lines of constant y or so called parallels may however
have a different amount of gridpoints along the x-direction (refFigure{structured-grid} and refFigure{structured-O16-grid}). Reduced grids are a common type of grid employed in global weather and climate models to reduce the number of points towards the poles
in order to achieve a quasi-uniform resolution on the sphere.

For both regular and reduced grids, no assumptions are made on the spacing between the parallels
in the y direction. The points in x-direction on every parallel are assumed to be equispaced.

Atlas provides grid construction facilities based on a configuration object of the type class{Config}
to create global grids or regional grids.
For most global grids, this configuration object can also be inferred from a simple string identifier or emph{name}
containing one or more numbers representing the grid resolution. Commonly used global grids that can
currently be accessed through such name are:

	regular longitude-latitude grid (name: L<NLON>x<NLAT> or L<N>);

	shifted longitude-latitude grid (name: S<NLON>x<NLAT> or S<N>);

	regular Gaussian grid (name: F<N>);

	classic reduced Gaussian grid (name: N<N>);

	octahedral reduced Gaussian grid (name: O<N>).

In the identifiers shown in this list, <NLON> stands for the number of longitudes, <NLAT> for the number of latitudes, and <N> for the number of parallels between the North Pole and equator (interval \([90^\circ, 0^\circ)\)). These grids will be explained in more detail following sections.

Projection

In order to support regional grids for the Limited Area Modelling (LAM) community,
projections are often needed that transform so called grid coordinates (x, y)
to geographic coordinates (longitude,latitude).
For regional grids, the grid coordinates are often defined in meters on a regular grid, as is the case for e.g. a Lambert conformal conic projection and a
Mercator projection. Another example projection that is also applicable to a global grid is the Schmidt projection.

In Atlas, the projection is embodied by a :dox:`Projection` class, illustrated in refFigure{grid-Projection}.
It wraps an abstract polymorphic class{ProjectionImplementation} class with currently 6 concrete implementations:

	:dox:`LonLatProjection` (type: lonlat, units: degrees, identity)

	:dox:`RotatedLonLatProjection` (type: rotated_lonlat, units: degrees)

	:dox:`SchmidtProjection` (type: schmidt, units: degrees)

	:dox:`RotatedSchmidtProjection` (type: rotated_schmidt, units: degrees)

	:dox:`MercatorProjection` (type: mercator, units: meters, regional)

	:dox:`RotatedMercatorProjection` (type: rotated_mercator, units: meters, regional)

	:dox:`LambertAzimuthalEqualAreaProjection` (type: lambert_azimuthal_equal_area, units: meters, regional)

	:dox:`LambertConformalConicProjection` (type: lambert_conformal_conic, units: meters, regional)

The :dox:`Projection` furthermore exposes functions to convert xy coordinates to lonlat coordinates and its inverse.

For more information about each concrete projection implementation, refer to ESCAPE deliverable report D4.4 cite{D4.4}.

Domain

In this section, the :dox:`Domain` class is introduced (refFigure{grid-Domain}). Its purpose is only useful for non-global grids, and
can be used to detect if any coordinate (x, y) is contained within the domain that envelops the grid.
The design follows the same principle as the :dox:`Projection`: the :dox:`Domain` class wraps an abstract polymorphic
:dox:`DomainImplementation` class with currently 3 concrete implementations:

	:dox:`RectangularDomain` (type: rectangular)

	:dox:`ZonalBandDomain` (type: zonal_band, units: degrees)

	:dox:`GlobalDomain` (type: global, units: degrees)

The :dox:`RectangularDomain` domain defines a rectangular region defined by 4 values: \(x_\mathrm{min}\), \(x_\mathrm{max}\), \(y_\mathrm{min}\), \(y_\mathrm{max}\). These values must be defined in units that correspond to the used grid projection. The :dox:`ZonalBandDomain` domain assumes that the units of x and y are in degrees, and that the domain is periodic in the x-direction. Therefore, to test if a point is contained within this domain only requires to check if the point’s y coordinate lies in the interval \([y_\mathrm{min} , y_\mathrm{max}]\). The :dox:`GlobalDomain` domain, like the :dox:`ZonalBandDomain` domain assumes units in degrees, and always evaluates that any point is contained within.

Supported Grid types

Atlas provides a basic :dox:`Grid` class that can embody any unstructured, regular or reduced grid.
The :dox:`Grid` class is a wrapper to an abstract polymorphic class{GridImplementation} class with 2 concrete implementations:
class{Unstructured} and class{Structured}. The class{Unstructured} implementation holds a list of (x, y) coordinates (one pair for each grid point). The
:dox:`Structured` implementation follows the assumption of a reduced grid. It holds a list of y-coordinates (one value for each grid parallel), a list of number
of points for each parallel, and a list of x-intervals (one pair for each parallel) in which the points for the parallel are uniformly distributed. With the :dox:`Structured` implementation, both reduced and regular grids can be represented, as regular grids can also be interpreted as a special case of a reduced grid (where every parallel contains the same number of points).

Following code snippets shows how to construct any grid from either a configuration object or a name, both in C++ and Fortran.

refFigure{grid-Grid} illustrates the :dox:`Grid` class implementation. It shows that the :dox:`Grid` class can
return instances of the :dox:`Domain` class and the :dox:`Projection` class.

Because this basic :dox:`Grid` class can make no assumptions on whether it wraps a class{Structured} or a class{Unstructured} concrete implementation, it can only expose an interface for the most general type of grids: the class{Unstructured} approach. This means that we can find out the number of grid points with
the :dox:`Grid::size()` function, and that we can iterate over all points, assuming no particular order. The following C++ code
shows how to iterate over all points, and use the projection to get longitude-latitude coordinates.

// Iterating over all points of a octahedral reduced Gaussian grid O1280

Grid grid("O1280");
Log::info() << "The grid contains " << grid.size() << " points. \n";
for(PointXY p, grid) {
 Log::info() << "xy: " << p << "\n";
 double x = p.x();
 double y = p.y();

 PointLonLat pll = grid.projection().lonlat(p);
 Log::info() << "lonlat: " << pll << "\n";
 double lon = pll.lon();
 double lat = pll.lat();
}

The basic :dox:`Grid` class shown in refFigure{grid-Grid} also exposes a function :dox:`Grid::uid()` which returns
a string which is guaranteed to be unique for every possible grid. This includes differences in projections and domains
as well.

To be able to expose more structure or properties present in the grid, a number of grid interpretation classes are
available, that also wrap the used class{GridImplementation}, but try to cast it to the class{Structured} implementation if necessary. Currently available interpretations classes are:

	:dox:`UnstructuredGrid`: The grid is unstructured and cannot be interpreted as structured.

	:dox:`StructuredGrid`: The grid may be regular or reduced.

	:dox:`RegularGrid`: The grid is regular.

	:dox:`ReducedGrid`: The grid is reduced, and not regular.

	:dox:`GaussianGrid`: The grid may be a global regular or reduced Gaussian grid.

	:dox:`RegularGaussianGrid`: The grid is a global regular Gaussian grid.

	:dox:`ReducedGaussianGrid`: The grid is a global reduced Gaussian grid, and emph{not} a regular grid.

	:dox:`RegularLonLatGrid`: The grid is a global regular longitude-latitude grid.

	:dox:`RegularPeriodicGrid`: The grid is a periodic (in x) regular grid.

	:dox:`RegularRegionalGrid`: The grid is a regional non-periodic regular grid, and can have any projection.

Note that there is no use case for interpreting a grid as e.g. octahedral reduced Gaussian or classic reduced Gaussian,
as it does not bring any benefit over the :dox:`ReducedGaussianGrid` interpretation class.

Just like the basic :dox:`Grid` class, these interpretation classes have a function valid(). Rather than throwing errors or aborting the program if the constraints listed above are not satisfied, the user has to call
the valid() function to assert the interpretation is possible.
refFigure{grid-Tree} illustrates the above list schematically. Arrows indicate a can be interpreted by relationship.

UnstructuredGrid

The :dox:`UnstructuredGrid` interpretation class constrains the grid implementation to be class{Unstructured}. No assumption on any form of structure can be made. Also no assumption on the domain nor the projection used is made.

refFigure{grid-UnstructuredGrid} shows the UML class diagram of the :dox:`StructuredGrid`. The first two constructors listed effectively create a new grid, whereas the third constructor accepts any existing grid, and reinterprets it instead. No copy or extra storage is then introduced, since the wrapped :dox:`GridImplementation` is a reference counted pointer (a.k.a. shared_ptr), of which the reference count is increased and decreased upon :dox:`UnstructuredGrid` construction and destruction respectively.

An :dox:`UnstructuredGrid` exposes two extra functions :dox:`UnstructuredGrid::xy(n)` and :dox:`UnstructuredGrid::lonlat(n)`. The first function
gives random access to the (x, y) coordinates of grid point n. The second function is a convenience function that internally uses the grid :dox:`Projection` to project the grid coordinates xy(i, j) to geographic coordinates.

StructuredGrid

The :dox:`StructuredGrid` interpretation class constrains the grid implementation to be class{Structured}. The grid may
be regular or reduced. It makes no assumptions on whether the domain is global, periodic, or regional, or whether any
projection is used. Almost any grid with some form of structure in a single area can therefore be interpreted by this
class.

refFigure{grid-StructuredGrid} shows the UML class diagram of the :dox:`StructuredGrid`. The first two constructors listed effectively create a new grid, whereas the third constructor accepts
any :dox:`Grid`, and reinterprets it instead if possible. No copy or extra storage is then introduced, since the wrapped class{GridImplementation} is a reference counted pointer (a.k.a. shared_ptr), of which the reference count is increased and decreased upon :dox:`StructuredGrid` construction and destruction respectively.

With the information that the grid can only be reduced or regular, new accessor functions can be exposed
to access grid points more effectively through indices (i, j). The only functions that can be guaranteed to
apply for both regular and reduced grids, are the ones that assume a reduced grid. This means that the x coordinate
and the number of points on a parallel depend on the parallel itself, denoted by index j.
For convenience, a function lonlat(i, j) is available that internally uses the grid :dox:`Projection`
to project the grid coordinates xy(i, j) to geographic coordinates.

RegularGrid

A :dox:`RegularGrid` is a specialisation of a :dox:`StructuredGrid` by further constraining that the number of points on every parallel is equal. In other words, points are now also aligned in y direction. The grid then forms a Cartesian coordinate system.

With this information, access to the x coordinate of a point is now independent of the index j, and only depends on the index i. The relevant functions that can be adapted now are :dox:`RegularGrid::nx()` and :dox:`RegularGrid::x(i)`. Using these functions can possibly increase the performance of algorithms.

ReducedGrid

A :dox:`ReducedGrid` is, unlike the :dox:`RegularGrid`, not a specialisation of the :dox:`StructuredGrid` in terms of functionality, but it does add the constraint that the grid is only valid when it is not regular.
refFigure{grid-ReducedGrid} shows the class diagram for this type of grid.

GaussianGrid

A :dox:`GaussianGrid` is a :dox:`StructuredGrid` with the additional constraint that the grid is globally defined with an even number of parallels that follow the roots of a Legendre polynomial in the interval \((90^\circ,-90^\circ)\) cite{Hortal1991}.
This class exposes an additional function :dox:`GaussianGrid::N()`, which is the so called Gaussian number, equivalent to the number of parallels between the North Pole and the equator. The x-coordinate of each first point of a parallel starts at \(0^\circ\) (Greenwich meridian). refFigure{grid-GaussianGrid} shows the class diagram for the :dox:`GaussianGrid`.

RegularGaussianGrid

A :dox:`RegularGaussianGrid` combines the properties of a :dox:`RegularGrid` and a :dox:`GaussianGrid`.
It can be defined by a single number N (the Gaussian number). The number of points in x- and y-direction are by convention
begin{align*}
nx &= 4 N \
ny &= 2 N
end{align*}
refFigure{grid-RegularGaussianGrid} shows the class diagram for the :dox:`RegularGaussianGrid`.
begin{figure}[htb!]
centering
includegraphics[scale=0.5]{figures/grid/RegularGaussianGrid.pdf}
caption{UML class diagram for the :dox:`RegularGaussianGrid` class }
label{figure:grid-RegularGaussianGrid}
end{figure}
As can be seen in the class diagram, an additional constructor is available, taking only this Gaussian number N, so that it is easy to create grids of this type. These grids can also be created through the constructor taking the name F<N>, with <N> the Gaussian number N.

ReducedGaussianGrid

A :dox:`ReducedGaussianGrid` combines the properties of a :dox:`ReducedGrid` and a :dox:`GaussianGrid`.
A single number N (the Gaussian number), defines the number of parallels (ny = 2 N), but no assumptions are made
on the number of points on each parallel.

refFigure{grid-ReducedGaussianGrid} shows the class diagram for the :dox:`ReducedGaussianGrid`.

As can be seen in the class diagram, an additional constructor is available, taking an array of integer values with size equal to the number of parallels (must be even). The values correspond to the number of points for each parallel. The WMO GRIB standard also refers to this array as PL, and IFS refers to this array as NLOEN. In Atlas it is referred to as the array nx (cfr. the :dox:`StructuredGrid`). The number of parallels ny is inferred by the length of this array, and the Gaussian N number is then ny/2, which is used to define the y-coordinate of the parallels.

Classic reduced Gaussian grids

In practise we tend to use only a small subset of the infinite possible combinations of reduced Gaussian grids for a specific N number. Until around 2016, ECMWF’s IFS-model was using reduced Gaussian grids for which the nx-array was not straightforward to compute. These arrays for all used reduced Gaussian grids were tabulated. We now refer to these grids as classic reduced Gaussian grids, and they can be created through the name N<N>, with <N> the Gaussian number N. Not any value of N is possible because there are only a limited number of such grids created (only the ones used). Atlas can create classic reduced Gaussian grids for values of N in the list [16, 24, 32, 48, 64, 80, 96, 128, 160, 200, 256, 320, 400, 512, 576, 640, 800, 1024, 1280, 1600, 2000, 4000, 8000].

Octahedral reduced Gaussian grids

Since around 2016, ECMWF’s IFS-model now uses reduced Gaussian grids for which the nx-array can be computed by a simple formula rather than a complex algorithm. These grids are referred to as octahedral reduced Gaussian grids. The nx-array can be computed as follows in C++:\

// Computing the `nx`-array for octahedral reduced Gaussian grids, C++ example,
int jLast = 2*N-1;
for(int j=0; j<N; ++j) {
 nx[j] = 20 + 4*j; // Up to equator
 nx[jLast-j] = nx[j]; // Symmetry around equator
}

In order to refer to these grids easily in common language, and to more easily construct these grids using the constructor taking a name, the name O<N> was chosen, with <N> the Gaussian number N, and O referring to octahedral. The term octahedral originates from the inspiration to project a regularly triangulated octahedron to the sphere. Few modifications to the resulting grid were made to make it a suitable reduced Gaussian grid for a spectral transform model cite{malardel2016new}.

RegularLonLatGrid

The :dox:`RegularLonLatGrid` is likely the most commonly used grid on the sphere. It is a global grid regular grid defined in degrees with a uniform distribution both in x- and in y-direction. Atlas supports 4 variants of the :dox:`RegularLonLatGrid`, each with 2 identifier names:
begin{itemize}
item standard: L<NLON>x<NLAT> or L<N>
item shifted: S<NLON>x<NLAT> or S<N>
item longitude-shifted: Slon<NLON>x<NLAT> or SLON<N>
item latitude-shifted: Slat<NLON>x<NLAT> or SLAT<N>
end{itemize}
In the identifier names, <NLON> and <NLAT> denote respectively nx and ny of a regular grid. For ease of comparison with the Gaussian grids, these grids can also be named instead with a N number denoting the number of parallels in the interval \([90^\circ,0^\circ)\) – between the North Pole and equator by including Pole and excluding equator. The x- and y-increment is then computed as \(90^\circ/N\).
For each of the grids, all points are defined in the range \(0^\circ \leq x < 360^\circ\) and \(-90^\circ \leq y \leq +90^\circ\).
For the emph{standard} case, the first and last parallel are located exactly at respectively the North and South Pole. Usually the number of parallels ny=<NLAT> is odd, so that there is also exactly one parallel on the equator. It is also guaranteed that the first point on each parallel is located on the Greenwich meridian (\(x = 0^\circ\)).
In this context, emph{shifted} denotes a shift or displacement of x- and y-coordinates of all points with half increments with respect to the standard (or unshifted) case. In order to achieve the same x- and y-increment as the emph{standard} case, the emph{shifted} case should be constructed with one less parallel. The two remaining cases emph{longitude-shifted} and emph{latitude-shifted} shift only respectively the x or y coordinate of each grid point.

refFigure{grid-RegularLonLatGrid} shows the class diagram for the :dox:`RegularLonLatGrid`. It can be seen that this class exposes 4 functions to query which of the 4 variants is presented.

RegularPeriodicGrid

The :dox:`RegularPeriodicGrid` can be used to assert that the grid is a regular grid with equidistant spacing in x- and y-direction, and with periodicity in the x-direction. The latter enforces an implicit additional constraint that x and y are defined in degrees. refFigure{grid-RegularPeriodicGrid} shows the class diagram for the :dox:`RegularPeriodicGrid`.

RegularRegionalGrid

The :dox:`RegularRegionalGrid` is a grid that asserts that the grid is not global nor periodic. The gridpoints must be equidistant both in x- and y-direction. No restrictions on projections are made. This grid would be the typical use-case grid to use in conjuction with e.g. a Lambert, Mercator, or RotatedLonLat projection.
refFigure{grid-RegularRegionalGrid} shows the class diagram for the :dox:`RegularRegionalGrid`.

Construction of grids of this type can be done in various ways through configuration.

Partitioner

Even though the class{Grid} object itself is not distributed in memory as it does not have a large memory footprint, it is necessary for parallel algorithms to divide work over parallel MPI tasks.

There exist various strategies in how to partition a grid, where each strategy may
offer different advantages, depending on the grid and numerical algorithms to be used.

Atlas implements a grid class{Partitioner} class, that given a grid, partitions the grid and creates a class{Distribution} object that describes for each grid point which partition it belongs to.
refFigure{grid-Partitioner} illustrates the UML class diagram for the class{Partitioner} class. Following a similar design philosophy as before, the class{Partitioner} class wraps an abstract polymorphic class{PartitionerImplementation} object. refFigure{grid-Distribution} illustrates the UML class diagram for the class{Distribution} class.

Currently there are 3 concrete implementations of the class{PartitionerImplementation}:

	:dox:`Checkerboard` (type: checkerboard) – Partitions a grid in regular zones

	:dox:`EqualRegions` (type: equal_regions) – Partitions a grid in equal regions, reminiscent of a disco ball.

	:dox:`MatchingMesh` (type: matching_mesh) – Partitions a grid such that grid points following the domain decomposition of an existing mesh which may be based on a different grid.

	:dox:`MatchingFunctionSpace` (type: matching_functionspace) – Partitions a grid such that grid points following the domain decomposition of an existing functionspace which may be based on a different grid.

The class{Checkerboard} and class{EqualRegions} implementations can be created from a configuration object only. The class{MatchingMesh} implementation requires a further mesh argument to its constructor. For this reason, a class{MatchingMeshPartitioner} class exists whose only purpose is that it knows how to construct its related class{MatchingMesh} implementation with the extra mesh argument.

Checkerboard Partitioner

For regular grids, such as the one depicted
in refFigure{regular-grid}, a logical domain decomposition would be a checkerboard. The grid is then divided as well as possible into approximate rectangular zones in Cartesian grid coordinates (x, y) with an equal number of grid points.
An example of this partitioning algorithm is shown in refFigure{grid-Checkerboard-example}.

[image: content/design/{static}/design/img/checkerboard-S64x32-32parts.png]

Example class{Checkerboard} partitioning of a shifted regular longitude-latitude grid S64x32 in 32 partitions.

EqualRegions Partitioner

For reduced grids as the ones shown in refFigure{structured-grid} and
refFigure{structured-O16-grid} or for uniformly distributed unstructured grids, an equal regions domain decomposition is more advantageous
cite{deconinck2016accelerating,leopardi2006partition,Mozdzynski2007}.
The equal regions partitioning algorithm divides a two-dimensional grid of the sphere
(i.e. representing a planet) into bands from the North pole to the South pole.
These bands are oriented in zonal directions and each band is then split further into
regions containing equal number of grid points. The only exceptions are the bands containing
the North or South Pole, that are not subdivided into regions but constitute North and
South polar caps.

An example of this partitioning algorithm is shown in refFigure{grid-EqualRegions-example}

[image: content/design/{static}/design/img/equal-regions-32parts-N16.png]

Example class{EqualRegions} partitioning of a idx{N16} classic reduced Gaussian grid in 32 partitions.

MatchingMesh Partitioner

The class{MatchingMeshPartitioner} allows to create a class{Distribution} for a grid such that the grid points follows the domain decomposition of an existing mesh (described in detail in refSection{mesh}).
This partitioning strategy is particularly useful when grid points of a partition should be contained within a mesh partition present on the same MPI task to avoid parallel communication during coupling or interpolation algorithms. Note that there is no guarantee of any load-balance here for the partitioned grid. refFigure{grid-MatchingMeshPartitioner-example} shows an example application of the class{MatchingMeshPartitioner}.

[image: content/design/{static}/design/img/matching-mesh-partitioner_N24-F8.png]

Example partitioning in 32 parts of a F8 rectangular Gaussian grid (solid dots) using the domain decomposition
of an existing meshed N24 classic reduced Gaussian grid. Each domain is shaded and surrounded by a solid line.
The jagged lines of the existing N24 mesh subdomains are contours of its elements.

MatchingFunctionSpace Partitioner

Interpolation

	breadcrumb

	{filename}/design.rst Design

Contents

	Interpolation

	Interpolation methods

	Finite Element

	K Nearest Neighbours

	Structured methods

	Non-linear interpolation

Interpolation in Atlas is interpreted as a linear operation,
with the weights calculated geometrically such that they do not depend
on the values being interpolated. This can be represented as a matrix multiplication,
\(y = A x\), for (x, y) the (input, output) values vectors, and A,
the interpolation weights matrix, stored in compressed sparse rows (CSR) format.

There are several options for generating the weights,
these are set by the type of the interpolation.

Interpolation methods

Finite Element

Enabled when type is finite-element. The weights are set according to the barycentric
coordinates of the mesh element surrounding the output location.

K Nearest Neighbours

Enabled when type is k-nearest-neighbours or nearest-neighbour (assumes k==1).
The weights are set such that only the nearest k points to the output location are nonzero.

Structured methods

The weights are calculated by a combination of 1-dimensional interpolations,
which relies on the structure of the grid, see StructuredGrid

Valid types are: structured-linear2D, structured-cubic2D, structured-quasicubic2D

	structured-linear2D: This method is commonly known as “bilinear”. The stencil is

j0 : i0----+--i1
 |
 *P
 |
j1 : i0--+----i1

Two 1D linear interpolations in West-East directions are
followed by a 1D linear interpolation in North-South direction,
resulting in 4 weights

	structured-cubic2D: The stencil is

j0 : i0----i1--+-i2----i3
 |
j1 : i0---i1-+-i2---i3
 *P
j2 : i0----i1--+-i2----i3
 |
j3 : i0---i1+--i2---i3

Fully cubic interpolation for point P would use the full 16 points stencil
and hence have 16 weights.

\[target(P) = \sum_{n=1}^{16} (w(n)*source(n))\]

Though the interpolation itself is “cubic”, the operator is linear as you can see.
The weights are computed by doing 4 1D cubic interpolations (West-East), one for each j,
followed by a 1D cubic interpolation perpendicular (North-South).

	structured-quasicubic2D:
For quasi-cubic interpolation we don’t use all the points from the cubic stencil:

j0 : i1--+-i2
 |
j1 : i0---i1-+-i2---i3
 *P
j2 : i0----i1--+-i2----i3
 |
j3 : i1+--i2

So we are having 2 1D linear interpolations at j0 and j3, and 2 cubic interpolations
at j1 and j2, followed by a 1-D cubic interpolation in North-South direction.
So instead of 16 weights we now have only 12 weights, making the method slightly cheaper.
For a 3D interpolation quasi-cubic makes more difference compared to fully cubic,
going from 64 weights to 32. Then there are 4 horizontal levels,
and the bottom and top level would be only linear, using j1 and j2 only.

Non-linear interpolation

Additionally there is capacity for performing a non-linear operation during the interpolation, for example to correct the weights to account for missing data in the input values.
There are two parts to this.

First, the interpolator must be configured to perform a nonlinear treatment by setting ‘non_linear’ to one of three values available at the moment:

	missing-if-any-missing: if an (output) point has contributions from (input) points where at least one is missing, the output is set to missing value;

	missing-if-all-missing: if an (output) point has contributions from (input) points where all points are missing values, the output is set to missing value (the missing input point weights are set to 0, the others are linearly rebalanced such that the sum of the weights is 1);

	missing-if-heaviest-missing: if an (output) point has contributions from (input) points where some are missing, the output is set to missing value only if the most significant weight also corresponds to a missing value (the weight rebalancing is the same as above).

A sensible choice for ‘non_linear’ is ‘missing-if-heaviest-missing’,
because it works well across large resolution changes in interpolations.
The other options are also suitable depending on your situation,
the choice would depend on your case.

The second requirement is to setup the missing values on the input field you wish
to interpolate. This means you must set the missing_value_type, missing_value and possibly missing_value_epsilon in the field metadata.
The missing_value_type value should be one of equals, NaN or approximately-equals.
With the approximately-equals value, the missing_value_epsilon field metadata must be set to define a tolerance, which is useful when handling lossy-compressed data.

Mesh

	breadcrumb

	{filename}/design.rst Design

For a wide variety of numerical algorithms, a :dox:`Grid` (i.e. a mere ordering of points and
their location) is not sufficient and a :dox:`Mesh` might be required. This is usually obtained
by connecting grid points using polygonal elements (also referred to as cells),
such as triangles or quadrilaterals. A mesh, denoted by \(\mathcal{M}\), can then be
defined as a collection of such elements \(\Omega_\mathrm{i}\):

\[\mathcal{M} \coloneqq \cup_{\mathrm{i}=1}^{N}\ \Omega_\mathrm{i}\]

For regular grids, the mesh elements can be inferred, as a
blocked arrangement of quadrilaterals. For unstructured grids or reduced grids (refSection{grid}),
these elements can
no longer be inferred, and explicit connectivity rules are required.
The :dox:`Mesh` class combines the knowledge of classes :dox:`Nodes`,
:dox:`Cells`, :dox:`Edges`, and provides a means to access connectivities
or adjacency relations between these classes).

:dox:`Nodes` describes the nodes of the mesh, :dox:`Cells` describes the elements
such as triangles and quadrilaterals, and :dox:`Edges` describes the lines connecting
the nodes of the mesh. refFigure{mesh-composition} sketches the composition of the
:dox:`Mesh` class with common access methods for its components. Differently from the
:dox:`Grid`, the :dox:`Mesh` may be distributed in memory. The physical domain \(S\) is
decomposed in sub-domains \(S_p\) and a corresponding mesh partition \(\mathcal{M}_\mathrm{p}\)
is defined as:

\[\mathcal{M}_{\mathrm{p}} := \{ \cup\ \Omega\ , \hspace{10pt} \forall \hspace{5pt} \Omega\ \in\
\mathcal{S}_\mathrm{p} \}.\]

More details regarding this aspect are given in refSection{parallelisation}.

A :dox:`Mesh` may simply be read from file by a :dox:`MeshReader`,
or generated from :dox:`Grid` by a :dox:`MeshGenerator`. The latter option is illustrated
in refFigure{conceptual_technical}, where the grid points will become the nodes
of the mesh elements. Following code shows how this can be achieved in practice for “structured” grids,
and refFigure{mesh-O16} visualises the resulting mesh for grids N16 and O16.

Grid grid("O16");
MeshGenerator generator("structured");
Mesh mesh = generator.generate(grid);

Because several element types can coexist as cells, the class :dox:`Cells`
is composing a more complex interplay of classes, such as :dox:`Elements`,
:dox:`ElementType`, :dox:`BlockConnectivity`, and :dox:`MultiBlockConnectivity`.
This composition is detailed in refFigure{mesh-cells}.

Atlas provide various type of connectivity tables: BlockConnectivity, IrregularConnectivity
and MultiBlockConnectivity. BlockConnectivity is used when all elements of the mesh are of
the same type, while IrregularConnectivity is more flexible and used when the elements in
the mesh can be of any type. The BlockConnectivity implementation has a regular structure
of the lookup tables and therefore provides better computational performance compared to
the IrregularConnectivity.
Finally the MultiBlockConnectivity supports those cases where the mesh contains various types
of elements but they can still be grouped into collections of elements of the same type so that
numerical algorithms can still benefit from performing operations using elements
of one element type at a time.
The :dox:`Elements` class provides the view of elements of one type with node and edge connectivities
as a :dox:`BlockConnectivity`. The interpretation
of the elements of this one type is delegated to the :dox:`ElementType` class.
The :dox:`Cells` class is composed of multiple :dox:`Element` and provides a unified view
of all elements regardless of their shape.
The :dox:`MultiBlockConnectivity` provides a matching unified connectivity table. Each block in the
MultiBlockConnectivity shares its memory with the BlockConnectivity present in the :dox:`Element` to
avoid memory duplication (see refFigure{mesh-connectivity}).

Although currently the mesh is composed of two-dimensional elements such as quadrilaterals and triangles,
three-dimensional mesh elements such as
hexahedra, tetrahedra, etc. are envisioned in the design and can be naturally embedded
within the presented data structure.
However, at least for the foreseeable future in NWP and climate applications,
the vertical discretisation may be considered orthogonal to the horizontal discretisation
due to the large anisotropy of physical scales in horizontal and vertical directions.
Given a number of vertical levels,
polygonal elements in the horizontal are then extruded to prismatic
elements oriented in the vertical direction (e.g.cite{macdonald2011modelingirregulargrids}).

Object oriented design

	breadcrumb

	{filename}/design.rst Design

Atlas is primarily written in the C++ programming language. The C++ programming
language facilitates OO design, and is high performance computing capable.

The latter is due to the support C++ brings for hardware
specific instructions. In addition, the high compatibility of C++ with C allows
Atlas to make use of specific programming models such as
CUDA to support GPU’s, and facilitates the creation of C-Fortran
bindings to create generic Fortran interfaces.

Contents

	Object oriented design

	Object oriented design in C++

	Abstract interface (ObjectBase)

	Factory with self-registration (ObjectFactory, ObjectBuilder)

	Pointer to abstract implementation (Object)

	Object oriented design in Fortran

Object oriented design in C++

Abstract interface (ObjectBase)

A commonly used feature in Atlas and in object-oriented programming is inheritance and polymorphism.
This is used to define a common abstract interface method() in a class ObjectBase,
with implementations in concrete classes ObjectA and ObjectB.

[image: content/design/{static}/design/img/cpp_polymorphism.png]

An example construction to create a concrete ObjectA in Modern C++ would be:

std::shared_ptr<ObjectBase> object{ new ObjectA(args...) };

Now algorithms can be created accepting the abstract ObjectBase

void use_object(const ObjectBase& object) {
 object.method();
}

...

use_object(*object);

Factory with self-registration (ObjectFactory, ObjectBuilder)

In above example the abstract object is hard-coded to be of concrete type ObjectA.
You may want to have this configurable depending on a user-defined string object_type.
You could then do:

std::shared_ptr<ObjectBase> object;
if(object_type == "A") {
 object = std::shared_ptr<ObjectBase>{ new ObjectA(args...) };
}
if(object_type == "B") {
 object = std::shared_ptr<ObjectBase>{ new ObjectB(args...) };
}

In order to avoid repeating this code in every place this is required, in Atlas we employ a Factory mechanism.
with self-registration, so that the above code could be transformed to:

std::shared_ptr<ObjectBase> object = ObjectFactory::build(object_type, args...)

The method ObjectFactory::build() can in principle just wrap the above code, but for reasons of
maintainability and more importantly extensibility, Atlas implements this using self-registration and an
abstract ObjectBuilder as follows:

[image: cpp_factory.png]

All that is now needed to register a concrete ObjectBuilder is to place

static ObjectBuilderT<ObjectA> builder_A{ "A" };
static ObjectBuilderT<ObjectA> builder_B{ "B" };

anywhere in a global scope. A good place would be in the file where each concrete Object is defined.
When the code is compiled into a shared library, then these builders are automatically registered in
the ObjectFactory when the library is loaded at run-time.

Pointer to abstract implementation (Object)

Another idiom which is adopted in Atlas is the Pointer to implementation (PIMPL) idiom.
This means that we create a class Object which contains as only data member a (shared)
pointer to the implementation ObjectBase, but also mimics the public interface of
ObjectBase but delegates execution to the encapsulated pointer:

[image: cpp_pimpl.png]

This certainly adds a maintainance cost to the Atlas core developers, as every public routine
in ObjectBase must be reproduced in Object.
It however adds several advantages for the user, and user-code:

	Value semantics. You do not have to handle the raw pointer ObjectBase*, e.g. by creating a
shared_ptr<ObjectBase>, and you do not need to use the -> operator.
This also ensures that when the Object instance goes out of scope, the internal pointer gets deleted
(if it is the only instance of the same shared pointer).

	Factory builder. The creation of concrete types is embedded in the constructor of Object!

	A compilation firewall. This is achieved because it is not required to #include <ObjectBase.h>
inside Object.h (only a forward declaration suffices as it is a pointer).

Object oriented design in Fortran

With much of the NWP operational software
written in Fortran, significant effort
in the Atlas design has been devoted to having a Fortran OO
Application Programming Interface (API)
wrapping the C++ concepts as closely as possible.

The Fortran API mirrors the C++ classes with a Fortran
derived type, whose only data member is a raw pointer to an
instance of the matching C++ class. The Fortran derived type
also contains member functions or subroutines that delegate
its implementation to matching member functions of the C++ class instance.
Since Fortran does not directly interoperate with
C++, C interfaces to the C++ class member functions are created first, and
it is these interfaces that the Fortran derived type delegates to.
The whole interaction procedure is schematically shown:

[image: Image alt text]

Plugin architecture

	breadcrumb

	{filename}/design.rst Design

Atlas’ concepts can be easily extended with custom implementations. Think e.g. custom Grids, Partitioners, MeshGenerators, FunctionSpaces, and many other abstract Atlas concepts. Rather than adding implementations in the Atlas library itself, the
implementations may reside in Atlas “plugins”.

Contents

	Plugin architecture

	What?

	Using a plugin

	Creating a plugin

What?

An Atlas plugin is essentially a shared library constructed and installed in a specific manner that gets dynamically
loaded at runtime of executables that make use of Atlas.

When the plugin library is loaded, it registers “ObjectBuilders” of concrete “Objects” implemented in the plugin in the Atlas “ObjectFactory”, as explained in Object oriented design.

Using a plugin

When Atlas is initialized at runtime, the environment variable ATLAS_PLUGINS is evaluated as a comma-separated
lists of plugin names. The shared library corresponding to each plugin name will then be dynamically loaded.

Each plugin shared library will be found without further hints if it is installed in the same install prefix as Atlas itself. Otherwise further comma-separated hints can be supplied with the environment variable ATLAS_PLUGIN_SEARCH_PATHS

Creating a plugin

Assume the plugin we want to create has name “my-plugin-name”.
The plugin’s CMakeLists.txt should then contain following:

find_package(atlas 0.22.0 REQUIRED)

atlas_create_plugin(my-plugin-name)

The CMake macro atlas_create_plugin is exported from Atlas upon find_package(atlas ...), and guarantees that the plugin
will be recognized by Atlas.

Within the plugin source code, it is mandatory to create a class which inherits from :dox:`Plugin`

// file: MyPlugin.h

#include "atlas/library/Plugin.h"

namespace my_plugin {

class MyPlugin : public atlas::Plugin {
private:
 MyPlugin();
public:
 static const MyPlugin& instance();
 std::string version() const override;
 std::string gitsha1(unsigned int count) const override;
};

} // namespace my_plugin

// file: MyPlugin.cc

#include "MyPlugin.h"

namespace my_plugin {

REGISTER_LIBRARY(MyPlugin); // Self-registration

MyPlugin::MyPlugin() : atlas::Plugin("my-plugin-name") {} // Name of the plugin

const MyPlugin& MyPlugin::instance() {
 static MyPlugin plugin;
 return plugin;
}

std::string MyPlugin::version() const {
 return "0.0.0"; // or replace with real version
}

std::string MyPlugin::gitsha1(unsigned int count) const override {
 return "not available"; // or replace with real git sha1
}

} // namespace my_plugin

It is now possible to add classes to the plugin that extend Atlas classes, just as if this plugin was part of the Atlas main library.

ecbuild

	breadcrumb

	{filename}/getting_started.rst Getting started
{filename}/getting_started/installation.rst Downloading and building

What is ecbuild?

ecbuild is project that contains a collection of CMake macros

Downloading

ecbuild is officially maintained and available from its ECMWF github page [https://github.com/ecmwf/ecbuild].

The master branch tracks the latest stable release, whereas the develop branch tracks the latest developments.

To download the project at the latest release
we can type on the terminal the commands reported below:

git clone -b master https://github.com/ecmwf/ecbuild.git

Installing

As ecbuild only consists of CMake scripts, it does not need any compiler.

cd ecbuild
mkdir build && cd build
cmake ../ -DCMAKE_INSTALL_PREFIX=<path-to-install>
make install

eckit

	breadcrumb

	{filename}/getting_started.rst Getting started
{filename}/getting_started/installation.rst Downloading and building

What is eckit?

eckit contains C++ helper classes that provides most notably following functionality to Atlas:

	
	Configuration
	
	YAML / JSON parser

	
	Logging
	
	Streams: Info / Warning / Error / Debug

	Hashing (MD5)

	Exception handling

	MPI abstraction with both a Parallel (true MPI) and Serial implementation

	
	Dense matrix and sparse matrix linear algebra abstraction with following notable backends depending on availability
	
	Generic (nested for loops)

	BLAS/LAPACK

	MKL

	Eigen

	Testing framework

Downloading

eckit is officially maintained and available from its ECMWF github page [https://github.com/ecmwf/eckit].

The master branch tracks the latest stable release, whereas the develop branch tracks the latest developments.

To download the project at the latest release
we can type on the terminal the commands reported below:

git clone -b master https://github.com/ecmwf/eckit.git

Installing

The eckit build system is based on CMake which tries to automatically detect compilers and project dependencies.
To avoid suprises make sure that the following environment variables
are pointing to the correct compiler.

	CC – Path to C compiler

	CXX – Path to C++ compiler

Other environment variables which may help CMake (version greater than 3.12) in finding useful dependencies for Atlas:

	ecbuild_ROOT – Path to ecbuild install prefix

	MPI_ROOT – Path to MPI install prefix

	MKLROOT – Path to Intel MKL install prefix

	Eigen3_ROOT – Path to Eigen install prefix

eckit can be configured and installed as follows, to a given path-to-install as shown below:

cd eckit
mkdir build && cd build
cmake ../ -DCMAKE_INSTALL_PREFIX=<path-to-install>
make install

If Atlas is the only reason to install eckit, it is OK to have several (undocumented) eckit features disabled.
It is then safe to add following to the arguments to the cmake configuration above:

-DENABLE_TESTS=OFF \
-DENABLE_ECKIT_SQL=OFF \
-DENABLE_ECKIT_CMD=OFF \
-DENABLE_ARMADILLO=OFF \
-DENABLE_VIENNACL=OFF \
-DENABLE_CUDA=OFF \
-DENABLE_AEC=OFF \
-DENABLE_XXHASH=OFF \
-DENABLE_LZ4=OFF \
-DENABLE_JEMALLOC=OFF \
-DENABLE_BZIPS2=OFF \
-DCMAKE_DISABLE_FIND_PACKAGE_Doxygen=ON

fckit

	breadcrumb

	{filename}/getting_started.rst Getting started
{filename}/getting_started/installation.rst Downloading and building

What is fckit?

fckit contains Fortran helper classes, many implemented by eckit in C++,
that provides most notably following functionality to the Atlas Fortran interfaces

	
	Configuration
	
	YAML / JSON parser

	
	Logging
	
	Streams: Info / Warning / Error / Debug

	Exceptions

	MPI abstraction with both a Parallel (true MPI) and Serial implementation

	Testing framework for Fortran (fctest)

	Powerful Fortran preprocessor based on fypp [https://github.com/aradi/fypp]

Downloading

fckit is officially maintained and available from its ECMWF github page [https://github.com/ecmwf/fckit].

The master branch tracks the latest stable release, whereas the develop branch tracks the latest developments.

To download the project at the latest release
we can type on the terminal the commands reported below:

git clone -b master https://github.com/ecmwf/fckit.git

Installing

The fckit build system is based on CMake which tries to automatically detect compilers and project dependencies.
To avoid suprises make sure that the following environment variables
are pointing to the correct compiler.

	CC – Path to C compiler

	CXX – Path to C++ compiler

	Fortran – Path to Fortran compiler

Other environment variables which may help CMake (version greater than 3.12) in finding useful dependencies for Atlas:

	ecbuild_ROOT – Path to ecbuild install prefix

	eckit_ROOT – Path to eckit install prefix

fckit can be configured and installed as follows, to a given path-to-install as shown below:

cd fckit
mkdir build && cd build
cmake ../ -DCMAKE_INSTALL_PREFIX=<path-to-install>
make install

If Atlas is the only reason to install fckit, it is OK to have several (undocumented) features disabled.
It is then safe to add following to the arguments to the cmake configuration above:

-DENABLE_TESTS=OFF

transi

	breadcrumb

	{filename}/getting_started.rst Getting started
{filename}/getting_started/installation.rst Downloading and building

What is transi?

transi contains a C interface and Fortran implementation of the IFS spectral transforms library trans.

Downloading

transi is officially maintained and available from its ECMWF git page [https://git.ecmwf.int/scm/atlas/transi].

The master branch tracks the latest stable release, whereas the develop branch tracks the latest developments.

To download the project at the latest release
we can type on the terminal the commands reported below:

git clone -b master https://git.ecmwf.int/scm/atlas/transi

Installing

The transi build system is based on CMake which tries to automatically detect compilers and project dependencies.
To avoid suprises make sure that the following environment variables
are pointing to the correct compiler.

	CC – Path to C compiler

	CXX – Path to C++ compiler

	Fortran – Path to Fortran compiler

Other environment variables which may help CMake (version greater than 3.12) in finding useful dependencies for Atlas:

	ecbuild_ROOT – Path to ecbuild install prefix

	MPI_ROOT – Path to MPI install prefix

	MKLROOT – Path to Intel MKL install prefix

	FFTW_ROOT – Path to FFTW install prefix

transi can be configured and installed as follows, to a given path-to-install as shown below:

cd transi
mkdir build && cd build
cmake ../ -DCMAKE_MODULE_PATH=$ecbuild_ROOT/share/cmake/ecbuild \
 -DCMAKE_INSTALL_PREFIX=<path-to-install>
make install

If Atlas is the only reason to install transi, it is OK to have several (undocumented) features disabled.
It is then safe to add following to the arguments to the cmake configuration above:

-DENABLE_TESTS=OFF

Downloading and building

	breadcrumb

	{filename}/getting_started.rst Getting started

Contents

	Downloading and building

	Basic system requirements

	Operating sytem

	Compilers

	CMake

	Dependencies

	Required dependencies

	Optional dependencies

	Installation Instructions

	Downloading Atlas

	Building Atlas

	Optional features

	FORTRAN

	MPI

	OMP

	TESSELATION

	GRIDTOOLS_STORAGE

	ACC

	TRANS

	PROJ

	TESTS

	Testing Atlas

	Installing Atlas

	Inspecting the Atlas installation

Basic system requirements

Operating sytem

Atlas requires a POSIX compliant operating system. This includes:

	Linux

	MacOSX (Darwin)

Compilers

Atlas requires a C++ compiler that supports the C++11 standard.
The optional Atlas Fortran API requires a Fortran compiler that supports the Fortran 2008 standard.

Tested compilers include:

	GNU 6.3, 7.3, 8.3

	Intel 18, 19

	PGI 17.7, 19.10

	Cray 8.7

	Clang C++ 7, 9 + GNU Fortran

CMake [http://www.cmake.org/.]

	Minimum required version: 3.6 or greater

	Recommended version: 3.14 or greater

CMake [http://www.cmake.org/.] is often already available on your system.
If version requirements are incompatible, prebuilt CMake binary distribution may be downloaded
here [https://cmake.org/download/#latest]

Dependencies

Atlas is distributed as Git repository and is officially maintained at the ECMWF github space [https://github.com/ecmwf/atlas].
It however relies on several dependencies to be pre-installed. Following figure illustrates how the dependencies interconnect.
Below are links to each of them, with installation instructions.

[image: Image alt text]

Dependency graph of Atlas

	Solid lines: required dependency

	Dotted lines: optional dependency, enabling features detailed in green

	Yellow boxes are required (fckit is required for Fortran interface)

	The package transi (cyan colored) is currently not open-source

	The packages on the right (white) are third party (non-ECMWF) open-sourced

Atlas aims to stay compatible with latest versions of dependencies (as of Atlas release date),
and hence latest versions of dependencies are recommended.
Please contact us if in doubt.

Required dependencies

For C++ API of Atlas:

	C++ [http://www.cplusplus.com/] compiler: C++11 standard support required

	CMake [http://www.cmake.org/.]: Build system (meta-build system) used to compile Atlas

	ecbuild [https://github.com/ecmwf/ecbuild]: It implements some CMake macros that
are used within the Atlas build system. For more brief information and to install,
check the ecbuild installation instructions

	eckit [https://github.com/ecmwf/eckit]: It implements some useful C++
functionalities useful for Atlas. For more brief information and to install,
check the eckit installation instructions

For Fortran API of Atlas, additional required dependencies:

	Fortran [https://en.wikipedia.org/wiki/Fortran] compiler: Fortran 2008 standard support required.

	fckit [https://github.com/ecmwf/fckit] : It implements some useful
Fortran functionalities. This is only needed when Fortran bindings are required.
For more brief information and to install,
check the fckit installation instructions

	Python [https://www.python.org/] : Required to generate Fortran interfaces

Optional dependencies

	MPI [https://www.open-mpi.org/]: Required for distributed memory parallelisation.

	OpenMP [http://openmp.org/wp/]: Required for shared memory
parallelisation. For use see.
As OpenMP is implemented within compilers, it is not
possible to install it yourself.

	CGAL [https://www.cgal.org/]: Required for enabling tesselation using
Delaunay triangulation of unstructured grids.

	Eigen3 [http://eigen.tuxfamily.org/] : Linear algebra library that
should not impact any Atlas internal performance.

	FFTW [http://www.fftw.org/] – FFT library that improves efficiency of inverse spherical harmonics transforms (TransLocal).
(Version 3.3.4 minimum required)

	BLAS [http://www.netlib.org/blas/] / LAPACK [http://www.netlib.org/lapack/] – Linear Algebra libraries that improve efficiency of inverse spherical harmonics transforms (TransLocal).
This library is typically available on the system, and preferred implementation is available within Intels MKL library.

	transi [https://git.ecmwf.int/projects/ATLAS/repos/transi/] – For enabling IFS spherical harmonics transforms (TransIFS).
This exposes an MPI parallel implementation for both direct and inverse
spherical harmonics transforms.
Note that transi is currently not open-source and requires a license agreement with ECMWF!
For more brief information and to install,
check the transi installation instructions

	GridTools [https://github.com/GridTools/gridtools] – For enabling GPU capability using CUDA in C++ or OpenACC in Fortran (compiler permitting).

	Proj [https://proj.org/] – For enabling Proj4 projections for grids. This is allows for projections that are not
natively supported in Atlas.

Installation Instructions

Before building, make sure all Required dependencies are available, as well as the required Optional dependencies
for the desired Optional features detailed below.

Once we have downloaded, compiled and installed required dependencies,
we can now proceed to download and install.

Downloading Atlas

atlas is officially maintained and available from its ECMWF github page [https://github.com/ecmwf/atlas].

The master branch tracks the latest stable release, whereas the develop branch tracks the latest developments.

To download the project at the latest release
we can type on the terminal the commands reported below:

git clone -b master https://github.com/ecmwf/atlas.git

Building Atlas

The atlas build system is based on CMake which tries to automatically detect compilers and project dependencies.
To avoid suprises make sure that the following environment variables
are pointing to the correct compiler.

	CC – Path to C compiler

	CXX – Path to C++ compiler

	Fortran – Path to Fortran compiler

Other environment variables which may help CMake (version greater than 3.12) in finding required and optional dependencies for Atlas:

	ecbuild_ROOT – Path to ecbuild install prefix

	eckit_ROOT – Path to eckit install prefix

	fckit_ROOT – Path to fckit install prefix

	transi_ROOT – Path to transi install prefix

	GridTools_ROOT – Path to GridTools install prefix

	CGAL_ROOT – Path to CGAL install prefix

	FFTW_ROOT – Path to FFTW install prefix

	PROJ4_ROOT – Path to Proj install prefix

	Eigen3_ROOT – Path to Eigen install prefix

atlas can be configured and installed as follows, to a given path-to-install as shown below:

cd atlas
mkdir build && cd build
cmake ../ -DCMAKE_INSTALL_PREFIX=<path-to-install>
make -j8

The number 8 in the argument -j8 to make speeds up compilation by using 8 threads.
This number can be tuned to maximise compilation speed.

Optional features

FORTRAN

This feature enables the compilation of the Atlas Fortran interface and is ON by default.
It requires availability of the package fckit and a python executable. If not available,
this feature will be disabled automatically.

MPI

This feature enables the capability of Atlas to have parallel distributed data structures and algorithms. It requires the availability
of MPI.

OMP

This feature enables the capability of OpenMP shared memory parallelism for algorithms within Atlas and is ON by default,
but depends on the OpenMP implementation within the compilers.

TESSELATION

This feature, ON by default, enables the Delaunay mesh generator,
which allows to generate a mesh by tesselating an unstructured grid using Delaunay triangulation.
It requires the availability of the CGAL optional dependency.

GRIDTOOLS_STORAGE

With this feature enabled, the underlying data memory storage is handled by GridTools. It therefore depends on the availability
of GridTools.
When GridTools is compiled with CUDA available, then the Atlas arrays are allocated both on the host (CPU) and device (GPU).
It is then possible to use atlas fields within CUDA kernels, and OpenACC.

ACC

This feature allows the use of OpenACC, provided that the feature GRIDTOOLS_STORAGE is also enabled.
It is ON by default, but depends on the OpenACC implementation within the compilers.

TRANS

This feature, ON by default, enables the TransIFS spectral transforms capability.
It allows to perform direct and inverse spectral transforms in an MPI distributed parallel context.
The scope is limited only to global (Reduced) Gaussian grids!
It requires the availability of the transi optional dependency, which requires private access permissions at ECMWF,
as it is not open-source.

PROJ

This feature, OFF by default grid projections defined by Proj, and relies on the package Proj to be available.

TESTS

This feature enables the compilation of Atlas unit tests.

Testing Atlas

The Atlas tests are managed by ctest which is bundled with the CMake software.
To launch the tests, navigate to the build directory and execute

ctest --output-on-failure

To run only tests matching a certain regular expression, execute

ctest --output-on-failure -R <regex>

To get output from tests that pass, execute

Installing Atlas

To install atlas, navigate to the build directory, and simply execute

make install

Inspecting the Atlas installation

Once installation of atlas is complete, an executable called atlas
can be found within the Atlas install directory. Executing

export PATH=$atlas_ROOT/bin:$PATH

returns information respectively on:

	the version,

	a more detailed git-version-controlled identifier

	a more complete view on all the features that Atlas has been compiled with,
as well as compiler and compile flag information.

Also printed is the versions of used dependencies such as eckit and transi.

Note that the output may vary in your case depending on features and versions.

Linking Atlas into your project

	breadcrumb

	{filename}/getting_started.rst Getting started

Contents

	Linking Atlas into your project

	Using CMake

	Finding Atlas

	Using a pre-installed Atlas

	Bundling Atlas as a subproject

	Linking your CMake library or executable with Atlas

	Complete CMake example

	Creating a new project with ecbuild

	Using pkgconfig

Guide on how to find and link Atlas into your project

Using CMake

As Atlas is itself built with the CMake build system, it is very convenient to include Atlas
in your own CMake project.

Finding Atlas

There are two approaches available, with tradeoffs for each.

	Using a pre-installed Atlas

	Bundling Atlas as a subproject

Using a pre-installed Atlas

This is the recommended option if Atlas is not part of your developments,
and rather used as a stable third-party library. You then don’t need to
add the overhead of Atlas compilation to each new build of your project.
On the other hand, it is less convenient to try out different build types,
compilers or other build options.

To aid CMake in finding Atlas, you can export atlas_ROOT in the environment

export atlas_ROOT=<path-to-atlas-install-prefix>

Within your own CMake project, then simply add

find_package(atlas REQUIRED)

The REQUIRED keyword is optional and causes CMake to exit with error if atlas was not found.

When atlas is found, the available atlas CMake targets will be defined:

	atlas – The core C++ library

	atlas_f – The Fortran interface library (only available if the atlas FORTRAN feature was enabled)

Additionally also following CMake variables will be defined:

	atlas_FOUND – True if atlas was found correctly

	atlas_HAVE_FORTRAN – True if the atlas FORTRAN feature was enabled

	atlas_HAVE_MPI – True if atlas is capable to run in a MPI parallel context

	atlas_HAVE_TESSELATION – True if the atlas TESSELATION feature was enabled

	atlas_HAVE_TRANS – True if the atlas TRANS feature was enabled

Bundling Atlas as a subproject

A self-contained alternative to a shared instance of the libraries,
is to add atlas and its required depenencies directly into your project (as Git submodules,
bundling downloaded archives etc.), and then to use CMake’s add_subdirectory()
command to compile them on demand.
With this approach, you don’t need to
care about manually installing atlas, fckit, eckit, and ecbuild;
however the usual tradeoffs when bundling code apply — slower full rebuilds,
IDEs having more to parse etc.
Conveniently, in this case, build-time options can be set
before calling add_subdirectory(). Note that it’s necessary to use
the CACHE ... FORCE arguments in order to have the options set properly.

Set features required for Atlas
set(ENABLE_MPI ON CACHE BOOL "" FORCE)
set(ENABLE_TESSELATION ON CACHE BOOL "" FORCE)

Add Atlas and its dependencies as subprojects
add_subdirectory(ecbuild)
add_subdirectory(eckit)
add_subdirectory(fckit)
add_subdirectory(atlas)

find_package(atlas REQUIRED)

Linking your CMake library or executable with Atlas

To use the C++ API of Atlas all you need to do to link
the atlas target to your target is using the target_link_libraries():

add_library(library_using_atlas
 source_using_atlas_1.cc
 source_using_atlas_2.cc)

target_link_libraries(library_using_atlas PUBLIC atlas)

Atlas include directories, compile definitions, and required C++ language
flags (e.g. -std=c++11) are automatically added to your target.

Complete CMake example

We now show a full example of a mixed C++ / Fortran project, describing the
two approaches in finding Atlas. The project contains two executables that simply
print “Hello from atlas” implemented respectively in C++ and Fortran.

In the case of pre-installed Atlas the project’s directory structure should be:

project/
 ├── CMakeLists.txt
 └── src/
 ├── hello_atlas.cc
 └── hello_atlas_f.F90

In the case of bundling Atlas dependencies as subprojects, the project’s directory structure should instead be:

project/
 ├── CMakeLists.txt
 ├── src/
 │ ├── hello_atlas.cc
 │ └── hello_atlas_f.F90
 ├── ecbuild/
 ├── eckit/
 ├── fckit/
 └── atlas/

The bundled dependencies can be e.g. added as git submodules, symbolic links,
or downloaded/added manually/automatically.

The content of the CMakeLists.txt at the project root contains

cmake_minimum_required(VERSION 3.12)

project(hello_world VERSION 1.0.0 LANGUAGES CXX Fortran)

Setup CMake behaviour
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/lib)
set(CMAKE_ARCHIVE_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/lib)
set(CMAKE_INSTALL_RPATH ${CMAKE_INSTALL_PREFIX}/lib)
set(CMAKE_INSTALL_RPATH_USE_LINK_PATH True)

###
Optionally add dependencies as subprojects

option(BUNDLE "Bundle dependencies as subprojects" OFF)
 # Can be enabled with `-DBUNDLE=ON`

if(BUNDLE)
 # Note that this case means that the source codes for
 # each of the following dependencies is required to
 # be available inside this directory, which may be
 # achieved via e.g. `copy`, `symbolic links`,
 # `git submodule`, ...

 # Set features for Atlas and dependencies
 set(ENABLE_MPI ON CACHE BOOL "" FORCE)
 set(ENABLE_TESTS OFF CACHE BOOL "" FORCE)

 # Add Atlas and dependencies as subprojects
 add_subdirectory(ecbuild)
 add_subdirectory(eckit)
 add_subdirectory(fckit)
 add_subdirectory(atlas)

endif()

###
Main project build

Find package atlas
find_package(atlas REQUIRED COMPONENTS FORTRAN)

Define a C++ executable and link with atlas
add_executable(hello-atlas src/hello-atlas.cc)
target_link_libraries(hello-atlas PUBLIC atlas)

Define a Fortran executable and link with atlas_f
add_executable(hello-atlas_f src/hello-atlas_f.F90)
target_link_libraries(hello-atlas_f PUBLIC atlas_f)

###
Installation

install(TARGETS hello-atlas hello-atlas_f
 RUNTIME DESTINATION bin)

Inspection of this CMakeLists.txt file shows that for this project we created
a BUNDLE option to toggle the behaviour of either bundling the dependencies or not.
To enable the bundling, the argument -DBUNDLE=ON needs to be passed
on the cmake configuration command line.

	The content of hello_atlas.cc is:

#include "atlas/library.h"
#include "atlas/runtime/Log.h"

int main(int argc, char* argv[]) {
 atlas::initialize(argc, argv);
 atlas::Log::info() << "Hello from atlas" << std::endl;
 atlas::finalize();
}

	The content of hello_atlas_f.cc is:

program hello_atlas_f
 use atlas_module
 implicit none

 call atlas_initialize()
 call atlas_log%info("Hello from atlas")
 call atlas_finalize()
end program

Creating a new project with ecbuild

When creating a new project from scratch, please consider to use ecbuild, which is
also used by atlas. It extends CMake with macros that make the experience easier.
An example project CMakeLists.txt file would then be:

cmake_minimum_required(VERSION 3.12)

find_package(ecbuild 3.0) # Required before project()

project(myproject VERSION 1.0.0 LANGUAGES CXX)

find_package(atlas REQUIRED)

ecbuild_add_library(TARGET mylib
 SOURCES
 src/mylib/myclass1.h
 src/mylib/myclass1.cc
 src/mylib/myclass2.h
 src/mylib/myclass12.cc
 PUBLIC_INCLUDES
 $<BUILD_INTERFACE:${PROJECT_SOURCE_DIR}/src>
 $<INSTALL_INTERFACE:include>
 PUBLIC_LIBS atlas
 INSTALL_HEADERS ALL
 HEADER_DESTINATION include/mylib)

ecbuild_add_executable(TARGET myexe
 SOURCES src/programs/myexe.cc
 LIBS mylib)

ecbuild_print_summary()
ecbuild_install_project(NAME myproject)

The strange entry PUBLIC_INCLUDES $<BUILD_INTERFACE:${PROJECT_SOURCE_DIR}/src> means that
the directory src within the project’s source dir of mylib is used as include directory during
compilation, but also propagated automatically (because PUBLIC) when compiling other
targets (such as myexe further) that link with mylib which is not yet installed.
The INSTALL_INTERFACE is used when myproject is installed, and downstream packages
need to link with mylib. The original source directory may have modified, or not be available any more.

Using pkgconfig

The ecbuild CMake scripts provide the Atlas installation with pkgconfig files
that contain the instructions for the required include directories, link directories
and link libraries.

Given that the variable atlas_ROOT is present, we can compile the same
hello_atlas.cc file above, using

export PKG_CONFIG_PATH=$atlas_ROOT/lib64/pkgconfig:$PKG_CONFIG_PATH
ATLAS_INCLUDES=$(pkg-config atlas --cflags)
ATLAS_LIBS=$(pkg-config atlas --libs)

$CXX hello-atlas.cc -o hello-atlas $ATLAS_INCLUDES $ATLAS_LIBS

Quick start

Atlas has a convenience script install.sh that may work for you, or may be an inspiration on how to adapt installation to your needs.
This script is also capable to install required and certain optional dependencies.

Basic system requirements

CMake [http://www.cmake.org/.]

	Minimum required version: 3.6 or greater

	Recommended version: 3.14 or greater

CMake is often already available on your system.
If version requirements are incompatible, prebuilt CMake binary distribution may be downloaded
here [https://cmake.org/download/#latest]

Compilers

Atlas requires a C++ compiler that supports the C++11 standard.
The optional Atlas Fortran API requires a Fortran compiler that supports the Fortran 2008 standard.

Tested compilers include:

	GNU 6.3, 7.3, 8.3

	Intel 18, 19

	PGI 17.7, 19.10

	Cray 8.7

	Clang C++ 7, 9 + GNU Fortran

Quick install

The Atlas build system is based on CMake which tries to automatically detect compilers and project dependencies.
To avoid suprises make sure that the following environment variables
are pointing to the correct compiler.

	CC – Path to C compiler

	CXX – Path to C++ compiler

	FC – Path to Fortran compiler

Download atlas and invoke the install.sh script:

mkdir sources
git clone https://github.com/ecmwf/atlas sources/atlas
sources/atlas/tools/install.sh --with-deps

This installs atlas, and downloads/installs its required dependencies eckit and fckit in a subdirectory install.
The install prefix, and other build options can be modified with extra arguments to the install.sh script.

Please check options, e.g. by calling

sources/atlas/tools/install.sh --help

atlas-gaussian-latitudes

	breadcrumb

	{filename}/tools.rst Tools

The command-line tool atlas-gaussian-latitudes provides computed values for Gaussian latitudes.

Contents

	atlas-gaussian-latitudes

	Usage

Usage

More information can be requested by the tool itself.

$ atlas-gaussian-latitudes --help

atlas-grids

	breadcrumb

	{filename}/tools.rst Tools

The command-line tool atlas-grids provides information on grids supported by Atlas.

Contents

	atlas-grids

	Usage

Usage

$ atlas-grids <grid> [OPTION]... [--help]

For a list of supported grids, use

$ atlas-grids --list

atlas-meshgen

	breadcrumb

	{filename}/tools.rst Tools

The command-line tool atlas-meshgen generates a mesh in the Gmsh [https://gmsh.info] format [https://gmsh.info/doc/texinfo/gmsh.html#MSH-file-format-version-2-_0028Legacy_0029] given a grid and options.

Contents

	atlas-meshgen

	Usage

	Options

	Coordinate visualization

	Projected (x, y) coordinates (2D)

	Geospherical (lon, lat) coordinates (2D)

	Earth Centred Earth Fixed (x, y, z) coordinates (3D)

	Pole visualization (in 3D)

	Patching the poles

	Including 1 point at the poles

Usage

$ atlas-meshgen GRID [OUTPUT] [OPTION]... [--help]

The GRID argument can be either the name of a named grid, orthe path to a YAML configuration file that describes the grid.
Example values for grid names are: N80, F40, O24, L64x33. See the program ‘atlas-grids’ for a list of named grids.
Example grid YAML files [https://github.com/ecmwf/atlas/tree/develop/doc/example-grids] can be found in the Atlas sources
(the check section in these files can be omitted).

The optional OUTPUT argument contains the path to the output file. If not given, a default value mesh.msh is employed.
For a list of supported grids, use

Options

Coordinate visualization

The atlas-meshgen tool has 3 coordinate visualization options.

Projected (x, y) coordinates (2D)

By default the nodes written in the projected x, y coordinates in a horizontal plane.
For example if the grid is defined with a Lambert Conic Conformal projection, then the x, y coordinates are the
values in metres, and the grid will look nicely Cartesian.

Geospherical (lon, lat) coordinates (2D)

The --lonlat option makes the atlas-meshgen tool output the mesh with nodes in geospherical lon, lat coordinates.

Earth Centred Earth Fixed (x, y, z) coordinates (3D)

The --3d option makes the atlas-meshgen tool output the mesh with nodes in Earth Centred Earth Fixed x, y, z coordinates.
This makes the mesh visualized on the sphere.

Pole visualization (in 3D)

Some grids defined in a geospherical coordinate system don’t have points at the pole. This is the case for Gaussian grids and Shifted grids.
Most mesh generators will then not create elements that include or cover the Pole.
Visualization of these grids in 3D would result in seeming holes at the North Pole and South Pole, as shown below:

[image: content/tools/{static}/tools/img/mesh3d_hole.png]

The atlas-meshgen tool has two options that can be used to “fill” the holes.

Patching the poles

The --patch-pole option will make the mesh generator connect the points closest to the Pole with triangles that cover the pole as shown below:

[image: content/tools/{static}/tools/img/mesh3d_patch.png]

Including 1 point at the poles

The --include-pole option will make the mesh generator add one extra point at the Pole if needed and create triangle elements with the Pole point as vertex as shown below:

[image: content/tools/{static}/tools/img/mesh3d_point.png]

About the Project

	summary

	Legal info, third party licenses and contributor credits

License

Atlas library code, documentation and website is licensed under the Apache License Version2.0:

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

Copyright 1996-2018 ECMWF

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Contact Us

	summary

	Ways to contact the team, follow the development, contribute

You can contact the team and follow the development via the following means:

	GitHub — https://github.com/ecmwf

	E-mail — willem.deconinck@ecmwf.int

Contribute to the project

Make a difference by submitting a bug report, feature request or submit a
patch. Best way to contribute is via the :gh:`GitHub project page <ecmwf/atlas>`,
but you can also send patches via e-mail or any other way. Thank you!

Atlas design and implementation

This page discusses the design of the most important Atlas concepts,
and to a certain level their implementation details. Implementation details
are aided by diagrams formulated in the Unified Modelling Language (UML) [http://www.uml.org].

Object oriented design »

Grid »

Mesh »

Interpolation »

Parallelisation »

FunctionSpace »

Field »

Mathematical operations »

Plugin architecture »

Getting started

Downloading and building »

Comprehensive guide on how to download and build Atlas,
including some of the in-house third party dependencies.

Linking Atlas into your project »

Comprehensive guide on how to get your CMake project to use Atlas

Atlas

	save_as

	index.html

	url

	

	cover

	{static}/img/cover.jpg

	description

	Data structure library for NWP and Climate Modelling

	summary

	Data structure library for NWP and Climate Modelling

	hide_navbar_brand

	True

	landing

	

Atlas

A library for Numerical Weather Prediction and Climate Modelling

Atlas is an open source library providing grids, mesh generation, and parallel
data structures targetting Numerical Weather Prediction or Climate Model
developments.

	
m-text-center m-text m-warning m-noindent

	

Version 0.26.0 released

Introduction

Atlas is an ECMWF software library for parallel flexible
data-structures supporting structured/unstructured grids,
structured/unstructured meshes, various function spaces
and utilities.
The main aim of Atlas is to investigate and develop more
scalable dynamical core options for numerical weather prediction
(NWP). Atlas is also intended to create modern interpolation
and product generation software.

Atlas is predominantly written in C++, with the main features
available to Fortran through an F2003 interface. To be used
effectively, it requires some knowledge of Unix (such as Linux).
It is known to run on a number of systems, some of which are
directly supported by ECMWF.

	Atlas includes the following macro data objects.
	
	Grid: a list of coordinates (i.e. points) without connectivity rules;

	Mesh: a collection of elements linked by precise connectivity rules;

	Field: a physical quantity such as wind velocity or pressure;

	FieldSet: a collection of Fields;

	FunctionSpace: a given spatial discretization space (e.g. spectral, finite element, etc.).

From these objects it is possible to construct new algorithms
to be tested within the context of numerical weather prediction
(NWP), to generate and manipulate grids for production
cases, etc. The overall structure of the library is depicted
here:

[image: Image alt text]

Schematics of the Atlas library

From this figure, we note that there is the additional object
called Metadata and related to the Field object. Metadata
contains a description of a given Field (e.g. units, etc.).
We also note that the Mesh object is formed by the Nodes
and HybridElements objects, with the last being composed
by Elements. These additional items represents the bricks
to ultimately build the mesh object.

The structure in this figure will be
further explained in chapter ref{chap:structure}.

Atlas tools

This page discusses some of the tools thar are provided by the atlas installation.

atlas-grids »

atlas-meshgen »

Grid

	breadcrumb

	{filename}/design.rst Design

Contents

	Grid

	Introduction

	Projection

	Domain

	Supported Grid types

	UnstructuredGrid

	StructuredGrid

	RegularGrid

	ReducedGrid

	GaussianGrid

	RegularGaussianGrid

	ReducedGaussianGrid

	Classic reduced Gaussian grids

	Octahedral reduced Gaussian grids

	RegularLonLatGrid

	RegularPeriodicGrid

	RegularRegionalGrid

	Partitioner

	Checkerboard Partitioner

	EqualRegions Partitioner

	MatchingMesh Partitioner

	MatchingFunctionSpace Partitioner

Introduction

In the NWP and climate modelling community (as opposed to, for instance, the engineering
community) the grid is often a fixed property for a model.
One of Atlas’ goals is to provide a catalogue of a variety of global and regional grids defined by the World Meteorological Organisation in order to support multiple models and model inter-comparison initiatives.

There exist three main categories of grids in terms of functionality that Atlas can
currently represent: unstructured grids, regular grids, and reduced grids.

Unstructured grids describe an arbitrary number of points in no particular order.
The x- and y-coordinates of the points cannot be computed with certain mathematical formulations, and thus have to be specified individually for each point (e.g. refFigure{unstructured-grid}).

Regular grids on the other hand make the assumption that points are aligned in both x- and y-direction (e.g. refFigure{regular-grid}).
Grid point coordinates can then be derived by two independent
indices (i, j) associated to the x- and y- direction, respectively.

For reduced grids, lines of constant y or so called parallels may however
have a different amount of gridpoints along the x-direction (refFigure{structured-grid} and refFigure{structured-O16-grid}). Reduced grids are a common type of grid employed in global weather and climate models to reduce the number of points towards the poles
in order to achieve a quasi-uniform resolution on the sphere.

For both regular and reduced grids, no assumptions are made on the spacing between the parallels
in the y direction. The points in x-direction on every parallel are assumed to be equispaced.

Atlas provides grid construction facilities based on a configuration object of the type class{Config}
to create global grids or regional grids.
For most global grids, this configuration object can also be inferred from a simple string identifier or emph{name}
containing one or more numbers representing the grid resolution. Commonly used global grids that can
currently be accessed through such name are:

	regular longitude-latitude grid (name: L<NLON>x<NLAT> or L<N>);

	shifted longitude-latitude grid (name: S<NLON>x<NLAT> or S<N>);

	regular Gaussian grid (name: F<N>);

	classic reduced Gaussian grid (name: N<N>);

	octahedral reduced Gaussian grid (name: O<N>).

In the identifiers shown in this list, <NLON> stands for the number of longitudes, <NLAT> for the number of latitudes, and <N> for the number of parallels between the North Pole and equator (interval \([90^\circ, 0^\circ)\)). These grids will be explained in more detail following sections.

Projection

In order to support regional grids for the Limited Area Modelling (LAM) community,
projections are often needed that transform so called grid coordinates (x, y)
to geographic coordinates (longitude,latitude).
For regional grids, the grid coordinates are often defined in meters on a regular grid, as is the case for e.g. a Lambert conformal conic projection and a
Mercator projection. Another example projection that is also applicable to a global grid is the Schmidt projection.

In Atlas, the projection is embodied by a :dox:`Projection` class, illustrated in refFigure{grid-Projection}.
It wraps an abstract polymorphic class{ProjectionImplementation} class with currently 6 concrete implementations:

	:dox:`LonLatProjection` (type: lonlat, units: degrees, identity)

	:dox:`RotatedLonLatProjection` (type: rotated_lonlat, units: degrees)

	:dox:`SchmidtProjection` (type: schmidt, units: degrees)

	:dox:`RotatedSchmidtProjection` (type: rotated_schmidt, units: degrees)

	:dox:`MercatorProjection` (type: mercator, units: meters, regional)

	:dox:`RotatedMercatorProjection` (type: rotated_mercator, units: meters, regional)

	:dox:`LambertAzimuthalEqualAreaProjection` (type: lambert_azimuthal_equal_area, units: meters, regional)

	:dox:`LambertConformalConicProjection` (type: lambert_conformal_conic, units: meters, regional)

The :dox:`Projection` furthermore exposes functions to convert xy coordinates to lonlat coordinates and its inverse.

For more information about each concrete projection implementation, refer to ESCAPE deliverable report D4.4 cite{D4.4}.

Domain

In this section, the :dox:`Domain` class is introduced (refFigure{grid-Domain}). Its purpose is only useful for non-global grids, and
can be used to detect if any coordinate (x, y) is contained within the domain that envelops the grid.
The design follows the same principle as the :dox:`Projection`: the :dox:`Domain` class wraps an abstract polymorphic
:dox:`DomainImplementation` class with currently 3 concrete implementations:

	:dox:`RectangularDomain` (type: rectangular)

	:dox:`ZonalBandDomain` (type: zonal_band, units: degrees)

	:dox:`GlobalDomain` (type: global, units: degrees)

The :dox:`RectangularDomain` domain defines a rectangular region defined by 4 values: \(x_\mathrm{min}\), \(x_\mathrm{max}\), \(y_\mathrm{min}\), \(y_\mathrm{max}\). These values must be defined in units that correspond to the used grid projection. The :dox:`ZonalBandDomain` domain assumes that the units of x and y are in degrees, and that the domain is periodic in the x-direction. Therefore, to test if a point is contained within this domain only requires to check if the point’s y coordinate lies in the interval \([y_\mathrm{min} , y_\mathrm{max}]\). The :dox:`GlobalDomain` domain, like the :dox:`ZonalBandDomain` domain assumes units in degrees, and always evaluates that any point is contained within.

Supported Grid types

Atlas provides a basic :dox:`Grid` class that can embody any unstructured, regular or reduced grid.
The :dox:`Grid` class is a wrapper to an abstract polymorphic class{GridImplementation} class with 2 concrete implementations:
class{Unstructured} and class{Structured}. The class{Unstructured} implementation holds a list of (x, y) coordinates (one pair for each grid point). The
:dox:`Structured` implementation follows the assumption of a reduced grid. It holds a list of y-coordinates (one value for each grid parallel), a list of number
of points for each parallel, and a list of x-intervals (one pair for each parallel) in which the points for the parallel are uniformly distributed. With the :dox:`Structured` implementation, both reduced and regular grids can be represented, as regular grids can also be interpreted as a special case of a reduced grid (where every parallel contains the same number of points).

Following code snippets shows how to construct any grid from either a configuration object or a name, both in C++ and Fortran.

refFigure{grid-Grid} illustrates the :dox:`Grid` class implementation. It shows that the :dox:`Grid` class can
return instances of the :dox:`Domain` class and the :dox:`Projection` class.

Because this basic :dox:`Grid` class can make no assumptions on whether it wraps a class{Structured} or a class{Unstructured} concrete implementation, it can only expose an interface for the most general type of grids: the class{Unstructured} approach. This means that we can find out the number of grid points with
the :dox:`Grid::size()` function, and that we can iterate over all points, assuming no particular order. The following C++ code
shows how to iterate over all points, and use the projection to get longitude-latitude coordinates.

// Iterating over all points of a octahedral reduced Gaussian grid O1280

Grid grid("O1280");
Log::info() << "The grid contains " << grid.size() << " points. \n";
for(PointXY p, grid) {
 Log::info() << "xy: " << p << "\n";
 double x = p.x();
 double y = p.y();

 PointLonLat pll = grid.projection().lonlat(p);
 Log::info() << "lonlat: " << pll << "\n";
 double lon = pll.lon();
 double lat = pll.lat();
}

The basic :dox:`Grid` class shown in refFigure{grid-Grid} also exposes a function :dox:`Grid::uid()` which returns
a string which is guaranteed to be unique for every possible grid. This includes differences in projections and domains
as well.

To be able to expose more structure or properties present in the grid, a number of grid interpretation classes are
available, that also wrap the used class{GridImplementation}, but try to cast it to the class{Structured} implementation if necessary. Currently available interpretations classes are:

	:dox:`UnstructuredGrid`: The grid is unstructured and cannot be interpreted as structured.

	:dox:`StructuredGrid`: The grid may be regular or reduced.

	:dox:`RegularGrid`: The grid is regular.

	:dox:`ReducedGrid`: The grid is reduced, and not regular.

	:dox:`GaussianGrid`: The grid may be a global regular or reduced Gaussian grid.

	:dox:`RegularGaussianGrid`: The grid is a global regular Gaussian grid.

	:dox:`ReducedGaussianGrid`: The grid is a global reduced Gaussian grid, and emph{not} a regular grid.

	:dox:`RegularLonLatGrid`: The grid is a global regular longitude-latitude grid.

	:dox:`RegularPeriodicGrid`: The grid is a periodic (in x) regular grid.

	:dox:`RegularRegionalGrid`: The grid is a regional non-periodic regular grid, and can have any projection.

Note that there is no use case for interpreting a grid as e.g. octahedral reduced Gaussian or classic reduced Gaussian,
as it does not bring any benefit over the :dox:`ReducedGaussianGrid` interpretation class.

Just like the basic :dox:`Grid` class, these interpretation classes have a function valid(). Rather than throwing errors or aborting the program if the constraints listed above are not satisfied, the user has to call
the valid() function to assert the interpretation is possible.
refFigure{grid-Tree} illustrates the above list schematically. Arrows indicate a can be interpreted by relationship.

UnstructuredGrid

The :dox:`UnstructuredGrid` interpretation class constrains the grid implementation to be class{Unstructured}. No assumption on any form of structure can be made. Also no assumption on the domain nor the projection used is made.

refFigure{grid-UnstructuredGrid} shows the UML class diagram of the :dox:`StructuredGrid`. The first two constructors listed effectively create a new grid, whereas the third constructor accepts any existing grid, and reinterprets it instead. No copy or extra storage is then introduced, since the wrapped :dox:`GridImplementation` is a reference counted pointer (a.k.a. shared_ptr), of which the reference count is increased and decreased upon :dox:`UnstructuredGrid` construction and destruction respectively.

An :dox:`UnstructuredGrid` exposes two extra functions :dox:`UnstructuredGrid::xy(n)` and :dox:`UnstructuredGrid::lonlat(n)`. The first function
gives random access to the (x, y) coordinates of grid point n. The second function is a convenience function that internally uses the grid :dox:`Projection` to project the grid coordinates xy(i, j) to geographic coordinates.

StructuredGrid

The :dox:`StructuredGrid` interpretation class constrains the grid implementation to be class{Structured}. The grid may
be regular or reduced. It makes no assumptions on whether the domain is global, periodic, or regional, or whether any
projection is used. Almost any grid with some form of structure in a single area can therefore be interpreted by this
class.

refFigure{grid-StructuredGrid} shows the UML class diagram of the :dox:`StructuredGrid`. The first two constructors listed effectively create a new grid, whereas the third constructor accepts
any :dox:`Grid`, and reinterprets it instead if possible. No copy or extra storage is then introduced, since the wrapped class{GridImplementation} is a reference counted pointer (a.k.a. shared_ptr), of which the reference count is increased and decreased upon :dox:`StructuredGrid` construction and destruction respectively.

With the information that the grid can only be reduced or regular, new accessor functions can be exposed
to access grid points more effectively through indices (i, j). The only functions that can be guaranteed to
apply for both regular and reduced grids, are the ones that assume a reduced grid. This means that the x coordinate
and the number of points on a parallel depend on the parallel itself, denoted by index j.
For convenience, a function lonlat(i, j) is available that internally uses the grid :dox:`Projection`
to project the grid coordinates xy(i, j) to geographic coordinates.

RegularGrid

A :dox:`RegularGrid` is a specialisation of a :dox:`StructuredGrid` by further constraining that the number of points on every parallel is equal. In other words, points are now also aligned in y direction. The grid then forms a Cartesian coordinate system.

With this information, access to the x coordinate of a point is now independent of the index j, and only depends on the index i. The relevant functions that can be adapted now are :dox:`RegularGrid::nx()` and :dox:`RegularGrid::x(i)`. Using these functions can possibly increase the performance of algorithms.

ReducedGrid

A :dox:`ReducedGrid` is, unlike the :dox:`RegularGrid`, not a specialisation of the :dox:`StructuredGrid` in terms of functionality, but it does add the constraint that the grid is only valid when it is not regular.
refFigure{grid-ReducedGrid} shows the class diagram for this type of grid.

GaussianGrid

A :dox:`GaussianGrid` is a :dox:`StructuredGrid` with the additional constraint that the grid is globally defined with an even number of parallels that follow the roots of a Legendre polynomial in the interval \((90^\circ,-90^\circ)\) cite{Hortal1991}.
This class exposes an additional function :dox:`GaussianGrid::N()`, which is the so called Gaussian number, equivalent to the number of parallels between the North Pole and the equator. The x-coordinate of each first point of a parallel starts at \(0^\circ\) (Greenwich meridian). refFigure{grid-GaussianGrid} shows the class diagram for the :dox:`GaussianGrid`.

RegularGaussianGrid

A :dox:`RegularGaussianGrid` combines the properties of a :dox:`RegularGrid` and a :dox:`GaussianGrid`.
It can be defined by a single number N (the Gaussian number). The number of points in x- and y-direction are by convention
begin{align*}
nx &= 4 N \
ny &= 2 N
end{align*}
refFigure{grid-RegularGaussianGrid} shows the class diagram for the :dox:`RegularGaussianGrid`.
begin{figure}[htb!]
centering
includegraphics[scale=0.5]{figures/grid/RegularGaussianGrid.pdf}
caption{UML class diagram for the :dox:`RegularGaussianGrid` class }
label{figure:grid-RegularGaussianGrid}
end{figure}
As can be seen in the class diagram, an additional constructor is available, taking only this Gaussian number N, so that it is easy to create grids of this type. These grids can also be created through the constructor taking the name F<N>, with <N> the Gaussian number N.

ReducedGaussianGrid

A :dox:`ReducedGaussianGrid` combines the properties of a :dox:`ReducedGrid` and a :dox:`GaussianGrid`.
A single number N (the Gaussian number), defines the number of parallels (ny = 2 N), but no assumptions are made
on the number of points on each parallel.

refFigure{grid-ReducedGaussianGrid} shows the class diagram for the :dox:`ReducedGaussianGrid`.

As can be seen in the class diagram, an additional constructor is available, taking an array of integer values with size equal to the number of parallels (must be even). The values correspond to the number of points for each parallel. The WMO GRIB standard also refers to this array as PL, and IFS refers to this array as NLOEN. In Atlas it is referred to as the array nx (cfr. the :dox:`StructuredGrid`). The number of parallels ny is inferred by the length of this array, and the Gaussian N number is then ny/2, which is used to define the y-coordinate of the parallels.

Classic reduced Gaussian grids

In practise we tend to use only a small subset of the infinite possible combinations of reduced Gaussian grids for a specific N number. Until around 2016, ECMWF’s IFS-model was using reduced Gaussian grids for which the nx-array was not straightforward to compute. These arrays for all used reduced Gaussian grids were tabulated. We now refer to these grids as classic reduced Gaussian grids, and they can be created through the name N<N>, with <N> the Gaussian number N. Not any value of N is possible because there are only a limited number of such grids created (only the ones used). Atlas can create classic reduced Gaussian grids for values of N in the list [16, 24, 32, 48, 64, 80, 96, 128, 160, 200, 256, 320, 400, 512, 576, 640, 800, 1024, 1280, 1600, 2000, 4000, 8000].

Octahedral reduced Gaussian grids

Since around 2016, ECMWF’s IFS-model now uses reduced Gaussian grids for which the nx-array can be computed by a simple formula rather than a complex algorithm. These grids are referred to as octahedral reduced Gaussian grids. The nx-array can be computed as follows in C++:\

// Computing the `nx`-array for octahedral reduced Gaussian grids, C++ example,
int jLast = 2*N-1;
for(int j=0; j<N; ++j) {
 nx[j] = 20 + 4*j; // Up to equator
 nx[jLast-j] = nx[j]; // Symmetry around equator
}

In order to refer to these grids easily in common language, and to more easily construct these grids using the constructor taking a name, the name O<N> was chosen, with <N> the Gaussian number N, and O referring to octahedral. The term octahedral originates from the inspiration to project a regularly triangulated octahedron to the sphere. Few modifications to the resulting grid were made to make it a suitable reduced Gaussian grid for a spectral transform model cite{malardel2016new}.

RegularLonLatGrid

The :dox:`RegularLonLatGrid` is likely the most commonly used grid on the sphere. It is a global grid regular grid defined in degrees with a uniform distribution both in x- and in y-direction. Atlas supports 4 variants of the :dox:`RegularLonLatGrid`, each with 2 identifier names:
begin{itemize}
item standard: L<NLON>x<NLAT> or L<N>
item shifted: S<NLON>x<NLAT> or S<N>
item longitude-shifted: Slon<NLON>x<NLAT> or SLON<N>
item latitude-shifted: Slat<NLON>x<NLAT> or SLAT<N>
end{itemize}
In the identifier names, <NLON> and <NLAT> denote respectively nx and ny of a regular grid. For ease of comparison with the Gaussian grids, these grids can also be named instead with a N number denoting the number of parallels in the interval \([90^\circ,0^\circ)\) – between the North Pole and equator by including Pole and excluding equator. The x- and y-increment is then computed as \(90^\circ/N\).
For each of the grids, all points are defined in the range \(0^\circ \leq x < 360^\circ\) and \(-90^\circ \leq y \leq +90^\circ\).
For the emph{standard} case, the first and last parallel are located exactly at respectively the North and South Pole. Usually the number of parallels ny=<NLAT> is odd, so that there is also exactly one parallel on the equator. It is also guaranteed that the first point on each parallel is located on the Greenwich meridian (\(x = 0^\circ\)).
In this context, emph{shifted} denotes a shift or displacement of x- and y-coordinates of all points with half increments with respect to the standard (or unshifted) case. In order to achieve the same x- and y-increment as the emph{standard} case, the emph{shifted} case should be constructed with one less parallel. The two remaining cases emph{longitude-shifted} and emph{latitude-shifted} shift only respectively the x or y coordinate of each grid point.

refFigure{grid-RegularLonLatGrid} shows the class diagram for the :dox:`RegularLonLatGrid`. It can be seen that this class exposes 4 functions to query which of the 4 variants is presented.

RegularPeriodicGrid

The :dox:`RegularPeriodicGrid` can be used to assert that the grid is a regular grid with equidistant spacing in x- and y-direction, and with periodicity in the x-direction. The latter enforces an implicit additional constraint that x and y are defined in degrees. refFigure{grid-RegularPeriodicGrid} shows the class diagram for the :dox:`RegularPeriodicGrid`.

RegularRegionalGrid

The :dox:`RegularRegionalGrid` is a grid that asserts that the grid is not global nor periodic. The gridpoints must be equidistant both in x- and y-direction. No restrictions on projections are made. This grid would be the typical use-case grid to use in conjuction with e.g. a Lambert, Mercator, or RotatedLonLat projection.
refFigure{grid-RegularRegionalGrid} shows the class diagram for the :dox:`RegularRegionalGrid`.

Construction of grids of this type can be done in various ways through configuration.

Partitioner

Even though the class{Grid} object itself is not distributed in memory as it does not have a large memory footprint, it is necessary for parallel algorithms to divide work over parallel MPI tasks.

There exist various strategies in how to partition a grid, where each strategy may
offer different advantages, depending on the grid and numerical algorithms to be used.

Atlas implements a grid class{Partitioner} class, that given a grid, partitions the grid and creates a class{Distribution} object that describes for each grid point which partition it belongs to.
refFigure{grid-Partitioner} illustrates the UML class diagram for the class{Partitioner} class. Following a similar design philosophy as before, the class{Partitioner} class wraps an abstract polymorphic class{PartitionerImplementation} object. refFigure{grid-Distribution} illustrates the UML class diagram for the class{Distribution} class.

Currently there are 3 concrete implementations of the class{PartitionerImplementation}:

	:dox:`Checkerboard` (type: checkerboard) – Partitions a grid in regular zones

	:dox:`EqualRegions` (type: equal_regions) – Partitions a grid in equal regions, reminiscent of a disco ball.

	:dox:`MatchingMesh` (type: matching_mesh) – Partitions a grid such that grid points following the domain decomposition of an existing mesh which may be based on a different grid.

	:dox:`MatchingFunctionSpace` (type: matching_functionspace) – Partitions a grid such that grid points following the domain decomposition of an existing functionspace which may be based on a different grid.

The class{Checkerboard} and class{EqualRegions} implementations can be created from a configuration object only. The class{MatchingMesh} implementation requires a further mesh argument to its constructor. For this reason, a class{MatchingMeshPartitioner} class exists whose only purpose is that it knows how to construct its related class{MatchingMesh} implementation with the extra mesh argument.

Checkerboard Partitioner

For regular grids, such as the one depicted
in refFigure{regular-grid}, a logical domain decomposition would be a checkerboard. The grid is then divided as well as possible into approximate rectangular zones in Cartesian grid coordinates (x, y) with an equal number of grid points.
An example of this partitioning algorithm is shown in refFigure{grid-Checkerboard-example}.

[image: scripts/pelican/content/design/{static}/design/img/checkerboard-S64x32-32parts.png]

Example class{Checkerboard} partitioning of a shifted regular longitude-latitude grid S64x32 in 32 partitions.

EqualRegions Partitioner

For reduced grids as the ones shown in refFigure{structured-grid} and
refFigure{structured-O16-grid} or for uniformly distributed unstructured grids, an equal regions domain decomposition is more advantageous
cite{deconinck2016accelerating,leopardi2006partition,Mozdzynski2007}.
The equal regions partitioning algorithm divides a two-dimensional grid of the sphere
(i.e. representing a planet) into bands from the North pole to the South pole.
These bands are oriented in zonal directions and each band is then split further into
regions containing equal number of grid points. The only exceptions are the bands containing
the North or South Pole, that are not subdivided into regions but constitute North and
South polar caps.

An example of this partitioning algorithm is shown in refFigure{grid-EqualRegions-example}

[image: scripts/pelican/content/design/{static}/design/img/equal-regions-32parts-N16.png]

Example class{EqualRegions} partitioning of a idx{N16} classic reduced Gaussian grid in 32 partitions.

MatchingMesh Partitioner

The class{MatchingMeshPartitioner} allows to create a class{Distribution} for a grid such that the grid points follows the domain decomposition of an existing mesh (described in detail in refSection{mesh}).
This partitioning strategy is particularly useful when grid points of a partition should be contained within a mesh partition present on the same MPI task to avoid parallel communication during coupling or interpolation algorithms. Note that there is no guarantee of any load-balance here for the partitioned grid. refFigure{grid-MatchingMeshPartitioner-example} shows an example application of the class{MatchingMeshPartitioner}.

[image: scripts/pelican/content/design/{static}/design/img/matching-mesh-partitioner_N24-F8.png]

Example partitioning in 32 parts of a F8 rectangular Gaussian grid (solid dots) using the domain decomposition
of an existing meshed N24 classic reduced Gaussian grid. Each domain is shaded and surrounded by a solid line.
The jagged lines of the existing N24 mesh subdomains are contours of its elements.

MatchingFunctionSpace Partitioner

Interpolation

	breadcrumb

	{filename}/design.rst Design

Contents

	Interpolation

	Interpolation methods

	Finite Element

	K Nearest Neighbours

	Structured methods

	Non-linear interpolation

Interpolation in Atlas is interpreted as a linear operation,
with the weights calculated geometrically such that they do not depend
on the values being interpolated. This can be represented as a matrix multiplication,
\(y = A x\), for (x, y) the (input, output) values vectors, and A,
the interpolation weights matrix, stored in compressed sparse rows (CSR) format.

There are several options for generating the weights,
these are set by the type of the interpolation.

Interpolation methods

Finite Element

Enabled when type is finite-element. The weights are set according to the barycentric
coordinates of the mesh element surrounding the output location.

K Nearest Neighbours

Enabled when type is k-nearest-neighbours or nearest-neighbour (assumes k==1).
The weights are set such that only the nearest k points to the output location are nonzero.

Structured methods

The weights are calculated by a combination of 1-dimensional interpolations,
which relies on the structure of the grid, see StructuredGrid

Valid types are: structured-linear2D, structured-cubic2D, structured-quasicubic2D

	structured-linear2D: This method is commonly known as “bilinear”. The stencil is

j0 : i0----+--i1
 |
 *P
 |
j1 : i0--+----i1

Two 1D linear interpolations in West-East directions are
followed by a 1D linear interpolation in North-South direction,
resulting in 4 weights

	structured-cubic2D: The stencil is

j0 : i0----i1--+-i2----i3
 |
j1 : i0---i1-+-i2---i3
 *P
j2 : i0----i1--+-i2----i3
 |
j3 : i0---i1+--i2---i3

Fully cubic interpolation for point P would use the full 16 points stencil
and hence have 16 weights.

\[target(P) = \sum_{n=1}^{16} (w(n)*source(n))\]

Though the interpolation itself is “cubic”, the operator is linear as you can see.
The weights are computed by doing 4 1D cubic interpolations (West-East), one for each j,
followed by a 1D cubic interpolation perpendicular (North-South).

	structured-quasicubic2D:
For quasi-cubic interpolation we don’t use all the points from the cubic stencil:

j0 : i1--+-i2
 |
j1 : i0---i1-+-i2---i3
 *P
j2 : i0----i1--+-i2----i3
 |
j3 : i1+--i2

So we are having 2 1D linear interpolations at j0 and j3, and 2 cubic interpolations
at j1 and j2, followed by a 1-D cubic interpolation in North-South direction.
So instead of 16 weights we now have only 12 weights, making the method slightly cheaper.
For a 3D interpolation quasi-cubic makes more difference compared to fully cubic,
going from 64 weights to 32. Then there are 4 horizontal levels,
and the bottom and top level would be only linear, using j1 and j2 only.

Non-linear interpolation

Additionally there is capacity for performing a non-linear operation during the interpolation, for example to correct the weights to account for missing data in the input values.
There are two parts to this.

First, the interpolator must be configured to perform a nonlinear treatment by setting ‘non_linear’ to one of three values available at the moment:

	missing-if-any-missing: if an (output) point has contributions from (input) points where at least one is missing, the output is set to missing value;

	missing-if-all-missing: if an (output) point has contributions from (input) points where all points are missing values, the output is set to missing value (the missing input point weights are set to 0, the others are linearly rebalanced such that the sum of the weights is 1);

	missing-if-heaviest-missing: if an (output) point has contributions from (input) points where some are missing, the output is set to missing value only if the most significant weight also corresponds to a missing value (the weight rebalancing is the same as above).

A sensible choice for ‘non_linear’ is ‘missing-if-heaviest-missing’,
because it works well across large resolution changes in interpolations.
The other options are also suitable depending on your situation,
the choice would depend on your case.

The second requirement is to setup the missing values on the input field you wish
to interpolate. This means you must set the missing_value_type, missing_value and possibly missing_value_epsilon in the field metadata.
The missing_value_type value should be one of equals, NaN or approximately-equals.
With the approximately-equals value, the missing_value_epsilon field metadata must be set to define a tolerance, which is useful when handling lossy-compressed data.

Mesh

	breadcrumb

	{filename}/design.rst Design

For a wide variety of numerical algorithms, a :dox:`Grid` (i.e. a mere ordering of points and
their location) is not sufficient and a :dox:`Mesh` might be required. This is usually obtained
by connecting grid points using polygonal elements (also referred to as cells),
such as triangles or quadrilaterals. A mesh, denoted by \(\mathcal{M}\), can then be
defined as a collection of such elements \(\Omega_\mathrm{i}\):

\[\mathcal{M} \coloneqq \cup_{\mathrm{i}=1}^{N}\ \Omega_\mathrm{i}\]

For regular grids, the mesh elements can be inferred, as a
blocked arrangement of quadrilaterals. For unstructured grids or reduced grids (refSection{grid}),
these elements can
no longer be inferred, and explicit connectivity rules are required.
The :dox:`Mesh` class combines the knowledge of classes :dox:`Nodes`,
:dox:`Cells`, :dox:`Edges`, and provides a means to access connectivities
or adjacency relations between these classes).

:dox:`Nodes` describes the nodes of the mesh, :dox:`Cells` describes the elements
such as triangles and quadrilaterals, and :dox:`Edges` describes the lines connecting
the nodes of the mesh. refFigure{mesh-composition} sketches the composition of the
:dox:`Mesh` class with common access methods for its components. Differently from the
:dox:`Grid`, the :dox:`Mesh` may be distributed in memory. The physical domain \(S\) is
decomposed in sub-domains \(S_p\) and a corresponding mesh partition \(\mathcal{M}_\mathrm{p}\)
is defined as:

\[\mathcal{M}_{\mathrm{p}} := \{ \cup\ \Omega\ , \hspace{10pt} \forall \hspace{5pt} \Omega\ \in\
\mathcal{S}_\mathrm{p} \}.\]

More details regarding this aspect are given in refSection{parallelisation}.

A :dox:`Mesh` may simply be read from file by a :dox:`MeshReader`,
or generated from :dox:`Grid` by a :dox:`MeshGenerator`. The latter option is illustrated
in refFigure{conceptual_technical}, where the grid points will become the nodes
of the mesh elements. Following code shows how this can be achieved in practice for “structured” grids,
and refFigure{mesh-O16} visualises the resulting mesh for grids N16 and O16.

Grid grid("O16");
MeshGenerator generator("structured");
Mesh mesh = generator.generate(grid);

Because several element types can coexist as cells, the class :dox:`Cells`
is composing a more complex interplay of classes, such as :dox:`Elements`,
:dox:`ElementType`, :dox:`BlockConnectivity`, and :dox:`MultiBlockConnectivity`.
This composition is detailed in refFigure{mesh-cells}.

Atlas provide various type of connectivity tables: BlockConnectivity, IrregularConnectivity
and MultiBlockConnectivity. BlockConnectivity is used when all elements of the mesh are of
the same type, while IrregularConnectivity is more flexible and used when the elements in
the mesh can be of any type. The BlockConnectivity implementation has a regular structure
of the lookup tables and therefore provides better computational performance compared to
the IrregularConnectivity.
Finally the MultiBlockConnectivity supports those cases where the mesh contains various types
of elements but they can still be grouped into collections of elements of the same type so that
numerical algorithms can still benefit from performing operations using elements
of one element type at a time.
The :dox:`Elements` class provides the view of elements of one type with node and edge connectivities
as a :dox:`BlockConnectivity`. The interpretation
of the elements of this one type is delegated to the :dox:`ElementType` class.
The :dox:`Cells` class is composed of multiple :dox:`Element` and provides a unified view
of all elements regardless of their shape.
The :dox:`MultiBlockConnectivity` provides a matching unified connectivity table. Each block in the
MultiBlockConnectivity shares its memory with the BlockConnectivity present in the :dox:`Element` to
avoid memory duplication (see refFigure{mesh-connectivity}).

Although currently the mesh is composed of two-dimensional elements such as quadrilaterals and triangles,
three-dimensional mesh elements such as
hexahedra, tetrahedra, etc. are envisioned in the design and can be naturally embedded
within the presented data structure.
However, at least for the foreseeable future in NWP and climate applications,
the vertical discretisation may be considered orthogonal to the horizontal discretisation
due to the large anisotropy of physical scales in horizontal and vertical directions.
Given a number of vertical levels,
polygonal elements in the horizontal are then extruded to prismatic
elements oriented in the vertical direction (e.g.cite{macdonald2011modelingirregulargrids}).

Object oriented design

	breadcrumb

	{filename}/design.rst Design

Atlas is primarily written in the C++ programming language. The C++ programming
language facilitates OO design, and is high performance computing capable.

The latter is due to the support C++ brings for hardware
specific instructions. In addition, the high compatibility of C++ with C allows
Atlas to make use of specific programming models such as
CUDA to support GPU’s, and facilitates the creation of C-Fortran
bindings to create generic Fortran interfaces.

Contents

	Object oriented design

	Object oriented design in C++

	Abstract interface (ObjectBase)

	Factory with self-registration (ObjectFactory, ObjectBuilder)

	Pointer to abstract implementation (Object)

	Object oriented design in Fortran

Object oriented design in C++

Abstract interface (ObjectBase)

A commonly used feature in Atlas and in object-oriented programming is inheritance and polymorphism.
This is used to define a common abstract interface method() in a class ObjectBase,
with implementations in concrete classes ObjectA and ObjectB.

[image: scripts/pelican/content/design/{static}/design/img/cpp_polymorphism.png]

An example construction to create a concrete ObjectA in Modern C++ would be:

std::shared_ptr<ObjectBase> object{ new ObjectA(args...) };

Now algorithms can be created accepting the abstract ObjectBase

void use_object(const ObjectBase& object) {
 object.method();
}

...

use_object(*object);

Factory with self-registration (ObjectFactory, ObjectBuilder)

In above example the abstract object is hard-coded to be of concrete type ObjectA.
You may want to have this configurable depending on a user-defined string object_type.
You could then do:

std::shared_ptr<ObjectBase> object;
if(object_type == "A") {
 object = std::shared_ptr<ObjectBase>{ new ObjectA(args...) };
}
if(object_type == "B") {
 object = std::shared_ptr<ObjectBase>{ new ObjectB(args...) };
}

In order to avoid repeating this code in every place this is required, in Atlas we employ a Factory mechanism.
with self-registration, so that the above code could be transformed to:

std::shared_ptr<ObjectBase> object = ObjectFactory::build(object_type, args...)

The method ObjectFactory::build() can in principle just wrap the above code, but for reasons of
maintainability and more importantly extensibility, Atlas implements this using self-registration and an
abstract ObjectBuilder as follows:

[image: cpp_factory.png]

All that is now needed to register a concrete ObjectBuilder is to place

static ObjectBuilderT<ObjectA> builder_A{ "A" };
static ObjectBuilderT<ObjectA> builder_B{ "B" };

anywhere in a global scope. A good place would be in the file where each concrete Object is defined.
When the code is compiled into a shared library, then these builders are automatically registered in
the ObjectFactory when the library is loaded at run-time.

Pointer to abstract implementation (Object)

Another idiom which is adopted in Atlas is the Pointer to implementation (PIMPL) idiom.
This means that we create a class Object which contains as only data member a (shared)
pointer to the implementation ObjectBase, but also mimics the public interface of
ObjectBase but delegates execution to the encapsulated pointer:

[image: cpp_pimpl.png]

This certainly adds a maintainance cost to the Atlas core developers, as every public routine
in ObjectBase must be reproduced in Object.
It however adds several advantages for the user, and user-code:

	Value semantics. You do not have to handle the raw pointer ObjectBase*, e.g. by creating a
shared_ptr<ObjectBase>, and you do not need to use the -> operator.
This also ensures that when the Object instance goes out of scope, the internal pointer gets deleted
(if it is the only instance of the same shared pointer).

	Factory builder. The creation of concrete types is embedded in the constructor of Object!

	A compilation firewall. This is achieved because it is not required to #include <ObjectBase.h>
inside Object.h (only a forward declaration suffices as it is a pointer).

Object oriented design in Fortran

With much of the NWP operational software
written in Fortran, significant effort
in the Atlas design has been devoted to having a Fortran OO
Application Programming Interface (API)
wrapping the C++ concepts as closely as possible.

The Fortran API mirrors the C++ classes with a Fortran
derived type, whose only data member is a raw pointer to an
instance of the matching C++ class. The Fortran derived type
also contains member functions or subroutines that delegate
its implementation to matching member functions of the C++ class instance.
Since Fortran does not directly interoperate with
C++, C interfaces to the C++ class member functions are created first, and
it is these interfaces that the Fortran derived type delegates to.
The whole interaction procedure is schematically shown:

[image: Image alt text]

Plugin architecture

	breadcrumb

	{filename}/design.rst Design

Atlas’ concepts can be easily extended with custom implementations. Think e.g. custom Grids, Partitioners, MeshGenerators, FunctionSpaces, and many other abstract Atlas concepts. Rather than adding implementations in the Atlas library itself, the
implementations may reside in Atlas “plugins”.

Contents

	Plugin architecture

	What?

	Using a plugin

	Creating a plugin

What?

An Atlas plugin is essentially a shared library constructed and installed in a specific manner that gets dynamically
loaded at runtime of executables that make use of Atlas.

When the plugin library is loaded, it registers “ObjectBuilders” of concrete “Objects” implemented in the plugin in the Atlas “ObjectFactory”, as explained in Object oriented design.

Using a plugin

When Atlas is initialized at runtime, the environment variable ATLAS_PLUGINS is evaluated as a comma-separated
lists of plugin names. The shared library corresponding to each plugin name will then be dynamically loaded.

Each plugin shared library will be found without further hints if it is installed in the same install prefix as Atlas itself. Otherwise further comma-separated hints can be supplied with the environment variable ATLAS_PLUGIN_SEARCH_PATHS

Creating a plugin

Assume the plugin we want to create has name “my-plugin-name”.
The plugin’s CMakeLists.txt should then contain following:

find_package(atlas 0.22.0 REQUIRED)

atlas_create_plugin(my-plugin-name)

The CMake macro atlas_create_plugin is exported from Atlas upon find_package(atlas ...), and guarantees that the plugin
will be recognized by Atlas.

Within the plugin source code, it is mandatory to create a class which inherits from :dox:`Plugin`

// file: MyPlugin.h

#include "atlas/library/Plugin.h"

namespace my_plugin {

class MyPlugin : public atlas::Plugin {
private:
 MyPlugin();
public:
 static const MyPlugin& instance();
 std::string version() const override;
 std::string gitsha1(unsigned int count) const override;
};

} // namespace my_plugin

// file: MyPlugin.cc

#include "MyPlugin.h"

namespace my_plugin {

REGISTER_LIBRARY(MyPlugin); // Self-registration

MyPlugin::MyPlugin() : atlas::Plugin("my-plugin-name") {} // Name of the plugin

const MyPlugin& MyPlugin::instance() {
 static MyPlugin plugin;
 return plugin;
}

std::string MyPlugin::version() const {
 return "0.0.0"; // or replace with real version
}

std::string MyPlugin::gitsha1(unsigned int count) const override {
 return "not available"; // or replace with real git sha1
}

} // namespace my_plugin

It is now possible to add classes to the plugin that extend Atlas classes, just as if this plugin was part of the Atlas main library.

ecbuild

	breadcrumb

	{filename}/getting_started.rst Getting started
{filename}/getting_started/installation.rst Downloading and building

What is ecbuild?

ecbuild is project that contains a collection of CMake macros

Downloading

ecbuild is officially maintained and available from its ECMWF github page [https://github.com/ecmwf/ecbuild].

The master branch tracks the latest stable release, whereas the develop branch tracks the latest developments.

To download the project at the latest release
we can type on the terminal the commands reported below:

git clone -b master https://github.com/ecmwf/ecbuild.git

Installing

As ecbuild only consists of CMake scripts, it does not need any compiler.

cd ecbuild
mkdir build && cd build
cmake ../ -DCMAKE_INSTALL_PREFIX=<path-to-install>
make install

eckit

	breadcrumb

	{filename}/getting_started.rst Getting started
{filename}/getting_started/installation.rst Downloading and building

What is eckit?

eckit contains C++ helper classes that provides most notably following functionality to Atlas:

	
	Configuration
	
	YAML / JSON parser

	
	Logging
	
	Streams: Info / Warning / Error / Debug

	Hashing (MD5)

	Exception handling

	MPI abstraction with both a Parallel (true MPI) and Serial implementation

	
	Dense matrix and sparse matrix linear algebra abstraction with following notable backends depending on availability
	
	Generic (nested for loops)

	BLAS/LAPACK

	MKL

	Eigen

	Testing framework

Downloading

eckit is officially maintained and available from its ECMWF github page [https://github.com/ecmwf/eckit].

The master branch tracks the latest stable release, whereas the develop branch tracks the latest developments.

To download the project at the latest release
we can type on the terminal the commands reported below:

git clone -b master https://github.com/ecmwf/eckit.git

Installing

The eckit build system is based on CMake which tries to automatically detect compilers and project dependencies.
To avoid suprises make sure that the following environment variables
are pointing to the correct compiler.

	CC – Path to C compiler

	CXX – Path to C++ compiler

Other environment variables which may help CMake (version greater than 3.12) in finding useful dependencies for Atlas:

	ecbuild_ROOT – Path to ecbuild install prefix

	MPI_ROOT – Path to MPI install prefix

	MKLROOT – Path to Intel MKL install prefix

	Eigen3_ROOT – Path to Eigen install prefix

eckit can be configured and installed as follows, to a given path-to-install as shown below:

cd eckit
mkdir build && cd build
cmake ../ -DCMAKE_INSTALL_PREFIX=<path-to-install>
make install

If Atlas is the only reason to install eckit, it is OK to have several (undocumented) eckit features disabled.
It is then safe to add following to the arguments to the cmake configuration above:

-DENABLE_TESTS=OFF \
-DENABLE_ECKIT_SQL=OFF \
-DENABLE_ECKIT_CMD=OFF \
-DENABLE_ARMADILLO=OFF \
-DENABLE_VIENNACL=OFF \
-DENABLE_CUDA=OFF \
-DENABLE_AEC=OFF \
-DENABLE_XXHASH=OFF \
-DENABLE_LZ4=OFF \
-DENABLE_JEMALLOC=OFF \
-DENABLE_BZIPS2=OFF \
-DCMAKE_DISABLE_FIND_PACKAGE_Doxygen=ON

fckit

	breadcrumb

	{filename}/getting_started.rst Getting started
{filename}/getting_started/installation.rst Downloading and building

What is fckit?

fckit contains Fortran helper classes, many implemented by eckit in C++,
that provides most notably following functionality to the Atlas Fortran interfaces

	
	Configuration
	
	YAML / JSON parser

	
	Logging
	
	Streams: Info / Warning / Error / Debug

	Exceptions

	MPI abstraction with both a Parallel (true MPI) and Serial implementation

	Testing framework for Fortran (fctest)

	Powerful Fortran preprocessor based on fypp [https://github.com/aradi/fypp]

Downloading

fckit is officially maintained and available from its ECMWF github page [https://github.com/ecmwf/fckit].

The master branch tracks the latest stable release, whereas the develop branch tracks the latest developments.

To download the project at the latest release
we can type on the terminal the commands reported below:

git clone -b master https://github.com/ecmwf/fckit.git

Installing

The fckit build system is based on CMake which tries to automatically detect compilers and project dependencies.
To avoid suprises make sure that the following environment variables
are pointing to the correct compiler.

	CC – Path to C compiler

	CXX – Path to C++ compiler

	Fortran – Path to Fortran compiler

Other environment variables which may help CMake (version greater than 3.12) in finding useful dependencies for Atlas:

	ecbuild_ROOT – Path to ecbuild install prefix

	eckit_ROOT – Path to eckit install prefix

fckit can be configured and installed as follows, to a given path-to-install as shown below:

cd fckit
mkdir build && cd build
cmake ../ -DCMAKE_INSTALL_PREFIX=<path-to-install>
make install

If Atlas is the only reason to install fckit, it is OK to have several (undocumented) features disabled.
It is then safe to add following to the arguments to the cmake configuration above:

-DENABLE_TESTS=OFF

transi

	breadcrumb

	{filename}/getting_started.rst Getting started
{filename}/getting_started/installation.rst Downloading and building

What is transi?

transi contains a C interface and Fortran implementation of the IFS spectral transforms library trans.

Downloading

transi is officially maintained and available from its ECMWF git page [https://git.ecmwf.int/scm/atlas/transi].

The master branch tracks the latest stable release, whereas the develop branch tracks the latest developments.

To download the project at the latest release
we can type on the terminal the commands reported below:

git clone -b master https://git.ecmwf.int/scm/atlas/transi

Installing

The transi build system is based on CMake which tries to automatically detect compilers and project dependencies.
To avoid suprises make sure that the following environment variables
are pointing to the correct compiler.

	CC – Path to C compiler

	CXX – Path to C++ compiler

	Fortran – Path to Fortran compiler

Other environment variables which may help CMake (version greater than 3.12) in finding useful dependencies for Atlas:

	ecbuild_ROOT – Path to ecbuild install prefix

	MPI_ROOT – Path to MPI install prefix

	MKLROOT – Path to Intel MKL install prefix

	FFTW_ROOT – Path to FFTW install prefix

transi can be configured and installed as follows, to a given path-to-install as shown below:

cd transi
mkdir build && cd build
cmake ../ -DCMAKE_MODULE_PATH=$ecbuild_ROOT/share/cmake/ecbuild \
 -DCMAKE_INSTALL_PREFIX=<path-to-install>
make install

If Atlas is the only reason to install transi, it is OK to have several (undocumented) features disabled.
It is then safe to add following to the arguments to the cmake configuration above:

-DENABLE_TESTS=OFF

Downloading and building

	breadcrumb

	{filename}/getting_started.rst Getting started

Contents

	Downloading and building

	Basic system requirements

	Operating sytem

	Compilers

	CMake

	Dependencies

	Required dependencies

	Optional dependencies

	Installation Instructions

	Downloading Atlas

	Building Atlas

	Optional features

	FORTRAN

	MPI

	OMP

	TESSELATION

	GRIDTOOLS_STORAGE

	ACC

	TRANS

	PROJ

	TESTS

	Testing Atlas

	Installing Atlas

	Inspecting the Atlas installation

Basic system requirements

Operating sytem

Atlas requires a POSIX compliant operating system. This includes:

	Linux

	MacOSX (Darwin)

Compilers

Atlas requires a C++ compiler that supports the C++11 standard.
The optional Atlas Fortran API requires a Fortran compiler that supports the Fortran 2008 standard.

Tested compilers include:

	GNU 6.3, 7.3, 8.3

	Intel 18, 19

	PGI 17.7, 19.10

	Cray 8.7

	Clang C++ 7, 9 + GNU Fortran

CMake [http://www.cmake.org/.]

	Minimum required version: 3.6 or greater

	Recommended version: 3.14 or greater

CMake [http://www.cmake.org/.] is often already available on your system.
If version requirements are incompatible, prebuilt CMake binary distribution may be downloaded
here [https://cmake.org/download/#latest]

Dependencies

Atlas is distributed as Git repository and is officially maintained at the ECMWF github space [https://github.com/ecmwf/atlas].
It however relies on several dependencies to be pre-installed. Following figure illustrates how the dependencies interconnect.
Below are links to each of them, with installation instructions.

[image: Image alt text]

Dependency graph of Atlas

	Solid lines: required dependency

	Dotted lines: optional dependency, enabling features detailed in green

	Yellow boxes are required (fckit is required for Fortran interface)

	The package transi (cyan colored) is currently not open-source

	The packages on the right (white) are third party (non-ECMWF) open-sourced

Atlas aims to stay compatible with latest versions of dependencies (as of Atlas release date),
and hence latest versions of dependencies are recommended.
Please contact us if in doubt.

Required dependencies

For C++ API of Atlas:

	C++ [http://www.cplusplus.com/] compiler: C++11 standard support required

	CMake [http://www.cmake.org/.]: Build system (meta-build system) used to compile Atlas

	ecbuild [https://github.com/ecmwf/ecbuild]: It implements some CMake macros that
are used within the Atlas build system. For more brief information and to install,
check the ecbuild installation instructions

	eckit [https://github.com/ecmwf/eckit]: It implements some useful C++
functionalities useful for Atlas. For more brief information and to install,
check the eckit installation instructions

For Fortran API of Atlas, additional required dependencies:

	Fortran [https://en.wikipedia.org/wiki/Fortran] compiler: Fortran 2008 standard support required.

	fckit [https://github.com/ecmwf/fckit] : It implements some useful
Fortran functionalities. This is only needed when Fortran bindings are required.
For more brief information and to install,
check the fckit installation instructions

	Python [https://www.python.org/] : Required to generate Fortran interfaces

Optional dependencies

	MPI [https://www.open-mpi.org/]: Required for distributed memory parallelisation.

	OpenMP [http://openmp.org/wp/]: Required for shared memory
parallelisation. For use see.
As OpenMP is implemented within compilers, it is not
possible to install it yourself.

	CGAL [https://www.cgal.org/]: Required for enabling tesselation using
Delaunay triangulation of unstructured grids.

	Eigen3 [http://eigen.tuxfamily.org/] : Linear algebra library that
should not impact any Atlas internal performance.

	FFTW [http://www.fftw.org/] – FFT library that improves efficiency of inverse spherical harmonics transforms (TransLocal).
(Version 3.3.4 minimum required)

	BLAS [http://www.netlib.org/blas/] / LAPACK [http://www.netlib.org/lapack/] – Linear Algebra libraries that improve efficiency of inverse spherical harmonics transforms (TransLocal).
This library is typically available on the system, and preferred implementation is available within Intels MKL library.

	transi [https://git.ecmwf.int/projects/ATLAS/repos/transi/] – For enabling IFS spherical harmonics transforms (TransIFS).
This exposes an MPI parallel implementation for both direct and inverse
spherical harmonics transforms.
Note that transi is currently not open-source and requires a license agreement with ECMWF!
For more brief information and to install,
check the transi installation instructions

	GridTools [https://github.com/GridTools/gridtools] – For enabling GPU capability using CUDA in C++ or OpenACC in Fortran (compiler permitting).

	Proj [https://proj.org/] – For enabling Proj4 projections for grids. This is allows for projections that are not
natively supported in Atlas.

Installation Instructions

Before building, make sure all Required dependencies are available, as well as the required Optional dependencies
for the desired Optional features detailed below.

Once we have downloaded, compiled and installed required dependencies,
we can now proceed to download and install.

Downloading Atlas

atlas is officially maintained and available from its ECMWF github page [https://github.com/ecmwf/atlas].

The master branch tracks the latest stable release, whereas the develop branch tracks the latest developments.

To download the project at the latest release
we can type on the terminal the commands reported below:

git clone -b master https://github.com/ecmwf/atlas.git

Building Atlas

The atlas build system is based on CMake which tries to automatically detect compilers and project dependencies.
To avoid suprises make sure that the following environment variables
are pointing to the correct compiler.

	CC – Path to C compiler

	CXX – Path to C++ compiler

	Fortran – Path to Fortran compiler

Other environment variables which may help CMake (version greater than 3.12) in finding required and optional dependencies for Atlas:

	ecbuild_ROOT – Path to ecbuild install prefix

	eckit_ROOT – Path to eckit install prefix

	fckit_ROOT – Path to fckit install prefix

	transi_ROOT – Path to transi install prefix

	GridTools_ROOT – Path to GridTools install prefix

	CGAL_ROOT – Path to CGAL install prefix

	FFTW_ROOT – Path to FFTW install prefix

	PROJ4_ROOT – Path to Proj install prefix

	Eigen3_ROOT – Path to Eigen install prefix

atlas can be configured and installed as follows, to a given path-to-install as shown below:

cd atlas
mkdir build && cd build
cmake ../ -DCMAKE_INSTALL_PREFIX=<path-to-install>
make -j8

The number 8 in the argument -j8 to make speeds up compilation by using 8 threads.
This number can be tuned to maximise compilation speed.

Optional features

FORTRAN

This feature enables the compilation of the Atlas Fortran interface and is ON by default.
It requires availability of the package fckit and a python executable. If not available,
this feature will be disabled automatically.

MPI

This feature enables the capability of Atlas to have parallel distributed data structures and algorithms. It requires the availability
of MPI.

OMP

This feature enables the capability of OpenMP shared memory parallelism for algorithms within Atlas and is ON by default,
but depends on the OpenMP implementation within the compilers.

TESSELATION

This feature, ON by default, enables the Delaunay mesh generator,
which allows to generate a mesh by tesselating an unstructured grid using Delaunay triangulation.
It requires the availability of the CGAL optional dependency.

GRIDTOOLS_STORAGE

With this feature enabled, the underlying data memory storage is handled by GridTools. It therefore depends on the availability
of GridTools.
When GridTools is compiled with CUDA available, then the Atlas arrays are allocated both on the host (CPU) and device (GPU).
It is then possible to use atlas fields within CUDA kernels, and OpenACC.

ACC

This feature allows the use of OpenACC, provided that the feature GRIDTOOLS_STORAGE is also enabled.
It is ON by default, but depends on the OpenACC implementation within the compilers.

TRANS

This feature, ON by default, enables the TransIFS spectral transforms capability.
It allows to perform direct and inverse spectral transforms in an MPI distributed parallel context.
The scope is limited only to global (Reduced) Gaussian grids!
It requires the availability of the transi optional dependency, which requires private access permissions at ECMWF,
as it is not open-source.

PROJ

This feature, OFF by default grid projections defined by Proj, and relies on the package Proj to be available.

TESTS

This feature enables the compilation of Atlas unit tests.

Testing Atlas

The Atlas tests are managed by ctest which is bundled with the CMake software.
To launch the tests, navigate to the build directory and execute

ctest --output-on-failure

To run only tests matching a certain regular expression, execute

ctest --output-on-failure -R <regex>

To get output from tests that pass, execute

Installing Atlas

To install atlas, navigate to the build directory, and simply execute

make install

Inspecting the Atlas installation

Once installation of atlas is complete, an executable called atlas
can be found within the Atlas install directory. Executing

export PATH=$atlas_ROOT/bin:$PATH

returns information respectively on:

	the version,

	a more detailed git-version-controlled identifier

	a more complete view on all the features that Atlas has been compiled with,
as well as compiler and compile flag information.

Also printed is the versions of used dependencies such as eckit and transi.

Note that the output may vary in your case depending on features and versions.

Linking Atlas into your project

	breadcrumb

	{filename}/getting_started.rst Getting started

Contents

	Linking Atlas into your project

	Using CMake

	Finding Atlas

	Using a pre-installed Atlas

	Bundling Atlas as a subproject

	Linking your CMake library or executable with Atlas

	Complete CMake example

	Creating a new project with ecbuild

	Using pkgconfig

Guide on how to find and link Atlas into your project

Using CMake

As Atlas is itself built with the CMake build system, it is very convenient to include Atlas
in your own CMake project.

Finding Atlas

There are two approaches available, with tradeoffs for each.

	Using a pre-installed Atlas

	Bundling Atlas as a subproject

Using a pre-installed Atlas

This is the recommended option if Atlas is not part of your developments,
and rather used as a stable third-party library. You then don’t need to
add the overhead of Atlas compilation to each new build of your project.
On the other hand, it is less convenient to try out different build types,
compilers or other build options.

To aid CMake in finding Atlas, you can export atlas_ROOT in the environment

export atlas_ROOT=<path-to-atlas-install-prefix>

Within your own CMake project, then simply add

find_package(atlas REQUIRED)

The REQUIRED keyword is optional and causes CMake to exit with error if atlas was not found.

When atlas is found, the available atlas CMake targets will be defined:

	atlas – The core C++ library

	atlas_f – The Fortran interface library (only available if the atlas FORTRAN feature was enabled)

Additionally also following CMake variables will be defined:

	atlas_FOUND – True if atlas was found correctly

	atlas_HAVE_FORTRAN – True if the atlas FORTRAN feature was enabled

	atlas_HAVE_MPI – True if atlas is capable to run in a MPI parallel context

	atlas_HAVE_TESSELATION – True if the atlas TESSELATION feature was enabled

	atlas_HAVE_TRANS – True if the atlas TRANS feature was enabled

Bundling Atlas as a subproject

A self-contained alternative to a shared instance of the libraries,
is to add atlas and its required depenencies directly into your project (as Git submodules,
bundling downloaded archives etc.), and then to use CMake’s add_subdirectory()
command to compile them on demand.
With this approach, you don’t need to
care about manually installing atlas, fckit, eckit, and ecbuild;
however the usual tradeoffs when bundling code apply — slower full rebuilds,
IDEs having more to parse etc.
Conveniently, in this case, build-time options can be set
before calling add_subdirectory(). Note that it’s necessary to use
the CACHE ... FORCE arguments in order to have the options set properly.

Set features required for Atlas
set(ENABLE_MPI ON CACHE BOOL "" FORCE)
set(ENABLE_TESSELATION ON CACHE BOOL "" FORCE)

Add Atlas and its dependencies as subprojects
add_subdirectory(ecbuild)
add_subdirectory(eckit)
add_subdirectory(fckit)
add_subdirectory(atlas)

find_package(atlas REQUIRED)

Linking your CMake library or executable with Atlas

To use the C++ API of Atlas all you need to do to link
the atlas target to your target is using the target_link_libraries():

add_library(library_using_atlas
 source_using_atlas_1.cc
 source_using_atlas_2.cc)

target_link_libraries(library_using_atlas PUBLIC atlas)

Atlas include directories, compile definitions, and required C++ language
flags (e.g. -std=c++11) are automatically added to your target.

Complete CMake example

We now show a full example of a mixed C++ / Fortran project, describing the
two approaches in finding Atlas. The project contains two executables that simply
print “Hello from atlas” implemented respectively in C++ and Fortran.

In the case of pre-installed Atlas the project’s directory structure should be:

project/
 ├── CMakeLists.txt
 └── src/
 ├── hello_atlas.cc
 └── hello_atlas_f.F90

In the case of bundling Atlas dependencies as subprojects, the project’s directory structure should instead be:

project/
 ├── CMakeLists.txt
 ├── src/
 │ ├── hello_atlas.cc
 │ └── hello_atlas_f.F90
 ├── ecbuild/
 ├── eckit/
 ├── fckit/
 └── atlas/

The bundled dependencies can be e.g. added as git submodules, symbolic links,
or downloaded/added manually/automatically.

The content of the CMakeLists.txt at the project root contains

cmake_minimum_required(VERSION 3.12)

project(hello_world VERSION 1.0.0 LANGUAGES CXX Fortran)

Setup CMake behaviour
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/lib)
set(CMAKE_ARCHIVE_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/lib)
set(CMAKE_INSTALL_RPATH ${CMAKE_INSTALL_PREFIX}/lib)
set(CMAKE_INSTALL_RPATH_USE_LINK_PATH True)

###
Optionally add dependencies as subprojects

option(BUNDLE "Bundle dependencies as subprojects" OFF)
 # Can be enabled with `-DBUNDLE=ON`

if(BUNDLE)
 # Note that this case means that the source codes for
 # each of the following dependencies is required to
 # be available inside this directory, which may be
 # achieved via e.g. `copy`, `symbolic links`,
 # `git submodule`, ...

 # Set features for Atlas and dependencies
 set(ENABLE_MPI ON CACHE BOOL "" FORCE)
 set(ENABLE_TESTS OFF CACHE BOOL "" FORCE)

 # Add Atlas and dependencies as subprojects
 add_subdirectory(ecbuild)
 add_subdirectory(eckit)
 add_subdirectory(fckit)
 add_subdirectory(atlas)

endif()

###
Main project build

Find package atlas
find_package(atlas REQUIRED COMPONENTS FORTRAN)

Define a C++ executable and link with atlas
add_executable(hello-atlas src/hello-atlas.cc)
target_link_libraries(hello-atlas PUBLIC atlas)

Define a Fortran executable and link with atlas_f
add_executable(hello-atlas_f src/hello-atlas_f.F90)
target_link_libraries(hello-atlas_f PUBLIC atlas_f)

###
Installation

install(TARGETS hello-atlas hello-atlas_f
 RUNTIME DESTINATION bin)

Inspection of this CMakeLists.txt file shows that for this project we created
a BUNDLE option to toggle the behaviour of either bundling the dependencies or not.
To enable the bundling, the argument -DBUNDLE=ON needs to be passed
on the cmake configuration command line.

	The content of hello_atlas.cc is:

#include "atlas/library.h"
#include "atlas/runtime/Log.h"

int main(int argc, char* argv[]) {
 atlas::initialize(argc, argv);
 atlas::Log::info() << "Hello from atlas" << std::endl;
 atlas::finalize();
}

	The content of hello_atlas_f.cc is:

program hello_atlas_f
 use atlas_module
 implicit none

 call atlas_initialize()
 call atlas_log%info("Hello from atlas")
 call atlas_finalize()
end program

Creating a new project with ecbuild

When creating a new project from scratch, please consider to use ecbuild, which is
also used by atlas. It extends CMake with macros that make the experience easier.
An example project CMakeLists.txt file would then be:

cmake_minimum_required(VERSION 3.12)

find_package(ecbuild 3.0) # Required before project()

project(myproject VERSION 1.0.0 LANGUAGES CXX)

find_package(atlas REQUIRED)

ecbuild_add_library(TARGET mylib
 SOURCES
 src/mylib/myclass1.h
 src/mylib/myclass1.cc
 src/mylib/myclass2.h
 src/mylib/myclass12.cc
 PUBLIC_INCLUDES
 $<BUILD_INTERFACE:${PROJECT_SOURCE_DIR}/src>
 $<INSTALL_INTERFACE:include>
 PUBLIC_LIBS atlas
 INSTALL_HEADERS ALL
 HEADER_DESTINATION include/mylib)

ecbuild_add_executable(TARGET myexe
 SOURCES src/programs/myexe.cc
 LIBS mylib)

ecbuild_print_summary()
ecbuild_install_project(NAME myproject)

The strange entry PUBLIC_INCLUDES $<BUILD_INTERFACE:${PROJECT_SOURCE_DIR}/src> means that
the directory src within the project’s source dir of mylib is used as include directory during
compilation, but also propagated automatically (because PUBLIC) when compiling other
targets (such as myexe further) that link with mylib which is not yet installed.
The INSTALL_INTERFACE is used when myproject is installed, and downstream packages
need to link with mylib. The original source directory may have modified, or not be available any more.

Using pkgconfig

The ecbuild CMake scripts provide the Atlas installation with pkgconfig files
that contain the instructions for the required include directories, link directories
and link libraries.

Given that the variable atlas_ROOT is present, we can compile the same
hello_atlas.cc file above, using

export PKG_CONFIG_PATH=$atlas_ROOT/lib64/pkgconfig:$PKG_CONFIG_PATH
ATLAS_INCLUDES=$(pkg-config atlas --cflags)
ATLAS_LIBS=$(pkg-config atlas --libs)

$CXX hello-atlas.cc -o hello-atlas $ATLAS_INCLUDES $ATLAS_LIBS

Quick start

Atlas has a convenience script install.sh that may work for you, or may be an inspiration on how to adapt installation to your needs.
This script is also capable to install required and certain optional dependencies.

Basic system requirements

CMake [http://www.cmake.org/.]

	Minimum required version: 3.6 or greater

	Recommended version: 3.14 or greater

CMake is often already available on your system.
If version requirements are incompatible, prebuilt CMake binary distribution may be downloaded
here [https://cmake.org/download/#latest]

Compilers

Atlas requires a C++ compiler that supports the C++11 standard.
The optional Atlas Fortran API requires a Fortran compiler that supports the Fortran 2008 standard.

Tested compilers include:

	GNU 6.3, 7.3, 8.3

	Intel 18, 19

	PGI 17.7, 19.10

	Cray 8.7

	Clang C++ 7, 9 + GNU Fortran

Quick install

The Atlas build system is based on CMake which tries to automatically detect compilers and project dependencies.
To avoid suprises make sure that the following environment variables
are pointing to the correct compiler.

	CC – Path to C compiler

	CXX – Path to C++ compiler

	FC – Path to Fortran compiler

Download atlas and invoke the install.sh script:

mkdir sources
git clone https://github.com/ecmwf/atlas sources/atlas
sources/atlas/tools/install.sh --with-deps

This installs atlas, and downloads/installs its required dependencies eckit and fckit in a subdirectory install.
The install prefix, and other build options can be modified with extra arguments to the install.sh script.

Please check options, e.g. by calling

sources/atlas/tools/install.sh --help

atlas-gaussian-latitudes

	breadcrumb

	{filename}/tools.rst Tools

The command-line tool atlas-gaussian-latitudes provides computed values for Gaussian latitudes.

Contents

	atlas-gaussian-latitudes

	Usage

Usage

More information can be requested by the tool itself.

$ atlas-gaussian-latitudes --help

atlas-grids

	breadcrumb

	{filename}/tools.rst Tools

The command-line tool atlas-grids provides information on grids supported by Atlas.

Contents

	atlas-grids

	Usage

Usage

$ atlas-grids <grid> [OPTION]... [--help]

For a list of supported grids, use

$ atlas-grids --list

atlas-meshgen

	breadcrumb

	{filename}/tools.rst Tools

The command-line tool atlas-meshgen generates a mesh in the Gmsh [https://gmsh.info] format [https://gmsh.info/doc/texinfo/gmsh.html#MSH-file-format-version-2-_0028Legacy_0029] given a grid and options.

Contents

	atlas-meshgen

	Usage

	Options

	Coordinate visualization

	Projected (x, y) coordinates (2D)

	Geospherical (lon, lat) coordinates (2D)

	Earth Centred Earth Fixed (x, y, z) coordinates (3D)

	Pole visualization (in 3D)

	Patching the poles

	Including 1 point at the poles

Usage

$ atlas-meshgen GRID [OUTPUT] [OPTION]... [--help]

The GRID argument can be either the name of a named grid, orthe path to a YAML configuration file that describes the grid.
Example values for grid names are: N80, F40, O24, L64x33. See the program ‘atlas-grids’ for a list of named grids.
Example grid YAML files [https://github.com/ecmwf/atlas/tree/develop/doc/example-grids] can be found in the Atlas sources
(the check section in these files can be omitted).

The optional OUTPUT argument contains the path to the output file. If not given, a default value mesh.msh is employed.
For a list of supported grids, use

Options

Coordinate visualization

The atlas-meshgen tool has 3 coordinate visualization options.

Projected (x, y) coordinates (2D)

By default the nodes written in the projected x, y coordinates in a horizontal plane.
For example if the grid is defined with a Lambert Conic Conformal projection, then the x, y coordinates are the
values in metres, and the grid will look nicely Cartesian.

Geospherical (lon, lat) coordinates (2D)

The --lonlat option makes the atlas-meshgen tool output the mesh with nodes in geospherical lon, lat coordinates.

Earth Centred Earth Fixed (x, y, z) coordinates (3D)

The --3d option makes the atlas-meshgen tool output the mesh with nodes in Earth Centred Earth Fixed x, y, z coordinates.
This makes the mesh visualized on the sphere.

Pole visualization (in 3D)

Some grids defined in a geospherical coordinate system don’t have points at the pole. This is the case for Gaussian grids and Shifted grids.
Most mesh generators will then not create elements that include or cover the Pole.
Visualization of these grids in 3D would result in seeming holes at the North Pole and South Pole, as shown below:

[image: scripts/pelican/content/tools/{static}/tools/img/mesh3d_hole.png]

The atlas-meshgen tool has two options that can be used to “fill” the holes.

Patching the poles

The --patch-pole option will make the mesh generator connect the points closest to the Pole with triangles that cover the pole as shown below:

[image: scripts/pelican/content/tools/{static}/tools/img/mesh3d_patch.png]

Including 1 point at the poles

The --include-pole option will make the mesh generator add one extra point at the Pole if needed and create triangle elements with the Pole point as vertex as shown below:

[image: scripts/pelican/content/tools/{static}/tools/img/mesh3d_point.png]

 _static/plus.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 <no title>

